In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.
This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively 5.9072 (mg/L)-1d-1 and 3.3974 (mg/L)-1d-1, and 1.2522 (mg/L)-1d-1 and 1.1998 (mg/L)-1d-1 after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.
This study aimed to develop a method to optimize residual chlorine concentrations in the process of providing water supply. To this end, this study developed a model capable of optimizing the chlorine input into the clearwell in the purification plant and the optimal installation location of rechlorination facilities, and chlorine input. This study applied genetic algorithms finding the optimal point with appropriate residual chlorine concentrations and deriving a cost-optimal solution. The developed model was applied to SN purification plant supply area. As a result, it was possible to meet the target residual chlorine concentration with the minimum cost. Also, the optimal operation method in target area according to the water temperature and volume of supply was suggested. On the basis of the results, this study derived the most economical operational method of coping with water pollution in the process of providing water supply and satisfying the service level required by consumers in the aspects of cost effectiveness. It is considered possible to appropriately respond to increasing service level required by consumers in the future and to use the study results to establish an operational management plan in a short-term perspective.
It is important to predict chlorine decay with different water purification processes and distribution pipeline materials, especially because chlorine decay is in direct relationship with the stability of water quality. The degree of chlorine decay may affect the water quality at the end of the pipeline: it may produce disinfection by-products or cause unpleasant odor and taste. Sand filtrate and dual media filtrate were used as influents in this study, and cast iron (CI), polyvinyl chloride (PVC), and stainless steel (SS) were used as pipeline materials. The results were analyzed via chlorine decay models by comparing the experimental and model parameters. The models were then used to estimate rechlorination time and chlorine decay time. The results indicated that water quality (e.g. organic matter and alkalinity) and pipeline materials were important factors influencing bulk decay and sand filtrate exhibited greater chlorine decay than dual media filtrate. The two-component second-order model was more applicable than the first decay model, and it enabled the estimation of chlorine decay time. These results are expected to provide the basis for modeling chlorine decay of different water purification processes and pipeline materials.
Three water treatment plants(WTPs) in Jeju island whose source water have different characteristics from those of the mainland of Korea were investigated. Coefficients of bulk water decay(kb ) of free chlorine at 5 ଌ for ES, GJ, NW WTPs were -0.003 hr -1, -0.002 hr -1 and −0.001 hr -1 respectively based on bottle tests.To simulate the free chlorine variations in the distribution system using EPANET, ES WTP was chosen. Free chlorine concentrations of several sites were less than the drinking water quality standards(i.e., 0.1 mg/L); E5(0.03 mg/L), E6(0.02 mg/L), W21(0.02 mg/L) and W25(0.03 mg/L). To maintain more than 0.1 mg/L of free chlorine in the distribution system, at least 1.9 mg/L of chlorine was needed at the WTP, which suggested rechlorination was needed to supply palatable tap water to customers.Two sites, one that diverged into E5 and E6 in the east-line and another located before E21 in the west-line were selected for the appropriate rechlorination locations. The recommended rechlorination dosages were 0.42 mg/L for the east and 0.27 mg/L for the west. The simulated results indicated that the free chlorine could be reduced to 0.4 mg/L at the WTP with rechlorination, and taps with excessive free chlorine could be more stabilized(i.e., 0.1 ~0.4 mg/L).
PCB 화합물 및 유기기염소계농약류는 난분해성이며 독성이 높은 대표적인 유기오염물질로서 환경 중에 배출되면 오랜 시간 잔류하게 된다. 대부분의 유기염소계화합물은 우선적 관찰 및 규제 대상물질로 분류되어 지구적 관심을 모으고 있다. 광양만은 대단위의 공업단지가 밀집해있고 반폐쇄적인 지형학적 구조를 가지고 있어 유기염소계화합물의 오염이 우려되는 대표적인 해역이다. 본 연구에서는 오염 모니터링에 대표적으로 이용되는 퇴적물과 부착성 이매패류를 채집하여 분석함으
본 연구에서는 모형배수지를 이용하여 유출량의 변동여부와 도류벽의 설치여부에 따른 유출수의 잔류염소농도의 변화를 추적하였다. 모형배수지의 실험결과를 고찰해 보면, 유출량을 변동시킨 경우에 있어서 도류벽이 없을 때와 도류벽이 2개 있을 때, 유출수의 평균 잔류염소농도의 차이가 유출량을 일정하게 유지한 경우에 비하여 줄어 들었다. 이는 유출량 변동의 영향에 의한 것으로 유출량의 변동이 심한 배수지에 있어서는 유출량의 변동이 심하지 않은 정수지에서 보다는 도류