만성리 해안은 중조차 해빈으로 조립한 해저질으로 구성되어 있으며, 외해에 대해 남동쪽으로 열려있어 조석 조류보다 파랑에 의한 해빈변형이 우세하게 나타났다. 파랑은 춘계와 하계에 강하여 유의파고가 2~3m에 달하는 폭풍파가 자주 출현하였으나 추계와 동계는 고파랑이 출현하지 않는 정온한 해상상태를 보였다. 관측된 해안선변화의 계절적 특징은 입사파와 깊은 관계를 나타내었다. 춘계와 하계의 고파랑시에 해안선이 침식하였고 추계과 동계의 정온시에 침식을 회복하였다. 이런 현장자료를 바탕으로 실측해안선자료를 사용하여 해안선변화의 검증수치실험을 수행하였는데, 검증매개변수 C₁ = 0.2와 C₂ = 1C₁일 때 사후예측된 해안선은 실측해안선과의 RMS 오차가 1.26 m 정도로 만족스러웠다. 이 값을 사용하여 잠제와 도류제 등이 완공된 10년 후 만성리 해빈의 해안선을 예측한 결과, 잠제배후역에서 5~15 m 정도 해안선이 전진하며, 잠제배후역 북측에서 5~15 m 정도 해안선이 후퇴하는 결과를 나타내었다.
In this paper Using a TTP to the experimental study on the stability of the Submerged breakwaters would like to perform. Experiment conditions consisted of structure conditions and incident wave conditions. Submerged breakwater which consisted of two layer installed in wave flume. height and crest width of submerged breakwaters are 8.6cm and 80cm, respectively. The three types of TTP were used: normal type, safety type, safety type(connect). In this study, rocking rate of submerged breakwater applied the general definition in Shore Protection Manual. Damage in terms of displaced blocks is generally given as the relative displacement, D, defined as the proportion of displaced blocks relative to the total number of blocks. Rocking rate was plotted in Figure 5 as function of Lb/L0. h=2.0hs, T=2sec case rocking rate of normal tetrapod are 57.1 %, safety tetrapod are nonrocking. Experimental result shown that stability of safety tetrapod higher than normal tetrapod.
Wave profiles coming with oblique angle to trapezoidal submerged breakwater on the porous seabed are computed numerically by using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structure. When compared with the existing results on the oblique incident wave, the results of this study show good agreement. The fluctuation of wave profiles is increased in the rear of the submerged breakwater due to the increase of the transmission coefficient, as the incident angle increases. In addition, in the case of the wave profiles passing over the submerged breakwater on porous seabed, it is able to verify that the attenuation of wave height occurs more significantly due to the wave energy dissipation than that of passing over the submerged breakwater on the impermeable seabed. The results indicate that wave profile own high dependability regarding the change of oblique incident waves and porous seabed. Therefore, the results of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and porous seabed in real sea environment.
The purpose of this research is to examine the beach erosion prevention capability of submerged breakwaters under wave energy condition. To accomplish this objective, the computational domain was divided into two domains : the large and the detailed domain for the Song-Do beach. For each computational domain, numerical models for calculating transformation, wave induced current and beach erosion were used and also these numerical models were carefully applied to three experimental cases such as 1) the present beach condition, 2) the condition for which submerged breakwaters are installed about 240m from the shoreline of beach enlarged by artificial nourishments. The results of this research show that if storm waves attack the present beach, the erosion occurs widely all over the beach. However, when the submerged breakwaters are installed in addition to the artificial nourishments, storm waves can be adequately controlled and strong wave induced currents occur only around the submerged breakwaters resulting in the beach evolution appearing locally only at the western end of the beach.
파랑제어 및 표사제어라고 하는 해안·항만구조물의 원래의 기능 이외에 해양·해안환경의 유지·개선의 기능까지도 갖춘 투과성잠제에 의한 비선형파랑변형을 해석하였다. 해석법으로서 Stokes 3차파에 기초한 섭동전개법과 경계요소법을 병용하는 주파수영역해석법을 처음으로 투과성잠제의 파랑변형에 적용하였다. 투과층내의 유체운동의 저항에는 Dupuit-Forchheimer의 저항식을 적용하며, Lorentz의 등가일원리에 기초하여 얻어지는 등가선형마찰계수의 산정식을