In order to minimize a building energy consumption with ventilation, a development of smart ventilation system is very important. In this study, a dry adsorbent that is main element of smart ventilation system was developed for removing indoor CO2, and evaluate the adsorption performance. Specific surface area, pore characteristic and crystal structure of the modified sorbent was measured to analyze physical properties. From this analysis, it was found that the developed absorbent has a low specific surface area, due to mesopores of substrate was filled with metal contained raw material. Additionally, through analysis of the adsorption properties, the developed adsorbent was shown a adsorption form of mesopore (type Ⅳ), which means adsorption amount was rapidly increased at the part of high-pressure. Order to applying for the field, chamber test was performed. Continuous column tests (2,500 ppm) and batch chamber tests (4 m3, 5,000 ppm) showed CO2 removal efficiency of 95% and 88% within 1 hour, respectively.
본 논문은 다양한 시설내에 적은 농도의 CO2 제거를 위한 선택적 CO2 흡수능력을 향상시킨 흡착제의 효율평가에 관한 것이다. 직경 4mm의 구형 흡착제는 시판용 제올라이트에 첨가제, 물, 바인더, LiOH를 섞어 제조하였다. 칼럼테스트에서 400분 이내에 90% 이상의 CO2흡착효율을 나타내었고, 흡착필터모듈 흡착능력을 평가하기 위해 회분식과 연속식타입의 챔버테스트가 시행되었다. 회분식테스트에서 30분 이내에 약 92%의 CO2가 제거되는 것을 확인하였다. 연속식테스트에서 30분 이내 70%의 CO2가 제거효율을 보였으며, 2,500ppm 이상의 CO2가 제거되는 것을 확인하였다. 재현성테스트를 수차례 수행한 결과 15일동안 1,000ppm 이상의 CO2가 연속적으로 제거됨을 보였다. TGA 분석법을 이용한 흡착량 분석에서 흡착제 g당 5.0mmol의 CO2를 흡착하는 것으로 나타났다. 본 연구에서 개발된 흡착제는 상온에서 저농도 CO2 실내환경에 적용가능한 것으로 판단된다.
In order to capture the indoor CO2 gas from public indoor spaces, a commercial zeolite(4A) was modified with alkali metals useful for adsorption. The prepared sorbents showed somewhat improved adsorption capacity. A few isotherm models were reviewed to characterize the adsorption mechanism of test sorbents. Sips model was found the most appropriate for low level indoor CO2 adsorption, but revealed a significant error in low pressure regimes and required numerical analysis for quantitative evaluation. Thus, a parameter(qm) in the equation was empirically recorrelated with a operation temperature. As a result, the final model equation including a simple linear function presented less errors for evaluation of the potential capacity of adsorption.
In this work, pellet type sorbents were prepared to control the low level indoor carbon dioxide with various physical compositions. In order to enhance the adsorption capacity, a few additives including alkali hydroxides were added to a commercial zeolitic sorbent by impregnation of alkali cation - Ca2+ through physical mixing and ion exchange. It was found that the binding materials such as dextrin or bentonite facilitating to form the granular sorbents would assist the adsorption capacity of sorbents. The ion exchange was more efficient for impregnation of alkalies, which showed better adsorption of gaseous CO2.