검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquid hydrogen, a promising energy carrier, necessitates robust storage and transportation systems due to its extremely low boiling point. Consequently, the development of reliable cryogenic adhesives and standardized testing protocols is crucial. This study focused on optimizing the design of a gripper used in single lap shear tests for evaluating cryogenic adhesives, specifically targeting the challenges posed by low-temperature conditions that induce slippage at the gripper interface. The optimal design was performed using a total of five variables, including the position and size of the gripper. By employing the genetic algorithm coupled with finite element analysis, we exhaustively searched through over 1000 models to identify the optimal gripper geometry. We successfully minimized stress concentration at the gripper region while maintaining a uniform stress distribution on the non-bonded surface. Furthermore, the study explored the impact of symmetric versus asymmetric gripper configurations on test results. The findings revealed that symmetric grippers generally yielded more consistent and reliable data. This study's results enable the accurate and stable execution of lap shear tests under the temperature conditions of liquefied hydrogen.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental pollution has led to global warming, which threatens human life. In response, hydrogen is gaining attention as a next-generation energy source that does not emit carbon. Due to its explosive nature, special care must be taken in the safe storage and transportation of hydrogen. Among various storage methods, liquefied storage, which can reduce its volume to 1/800, is considered efficient. However, since its boiling point reaches -253°C, the design of an insulation system is essential. For the design of insulation systems applied to large containers, a membrane-type design is required, which necessitates the use of cryogenic adhesives. To evaluate whether the cryogenic adhesive is properly implemented, assessments such as tensile and shear tests are necessary. This study presents a methodology for shear evaluation. Conventional methods for shear evaluation of adhesives result in slippage, preventing proper assessment. Therefore, a method involving drilling holes in the gripper and pulling from the holes must be applied. Optimal design concerning the size and location of the holes is required, and this study derives optimal values based on finite element analysis. By conducting experiments based on the results of this study, it is expected that the risk of gripper damage will be minimized, allowing for accurate evaluation of the adhesive’s performance.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conversion to modern hydrogen energy is required, and research on liquefied hydrogen cargo containment systems is needed for large-capacity transport and storage. In this study, changes in the mechanical properties of the adhesive required for storage and transport in liquid hydrogen were confirmed. The lap shear test was performed by realizing cryogenic conditions in a small chamber using liquid nitrogen and liquid helium. There was an increase of 11.0% in the -180℃ condition compared to room temperature, and an increase of 1.8% in the -230℃ condition compared to the -180℃ condition was confirmed. In the case of shear strain, it is known that it decreases as the temperature goes down. As a result of the experiment, it was confirmed that the value at room temperature and the value at -180℃ reduced the shear strain by 5.0%, and -230˚ compared to the -180℃ condition. An increase of 1.5% was confirmed in the C condition. In the case of the specimen tested at -230℃, the deformation in the gripper part was larger than in other tests, and it is judged that the maximum shear strength and shear strain were affected. In addition, in this study, there is a limitation in the experiment at -230°C rather than 253°C, which is the boiling point of hydrogen
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In modern times, where problems due to environmental pollution are continuously occurring, hydrogen is in the spotlight as the energy of the future. Hydrogen is an eco-friendly energy resource that does not even generate CO2, and is actively supporting research to utilize hydrogen energy at the national level. This study is a study on the cryogenic mechanical properties of the elements constituting the cargo hold during the transportation of liquid hydrogen. Among the various components, the evaluation of mechanical properties of the cryogenic adhesive under liquid helium conditions was confirmed. The related contents are summarized as follows. As a result of performing SSRT by curing the adhesive, it was confirmed that tensile strength and maximum strain were increased at cryogenic temperature (-230°C) compared to room temperature (25°C). It was confirmed that the adhesive-hardened specimen showed a brittle fracture mode at both room temperature and cryogenic temperature during tensile. Improvements in this study, such as pores occurring during adhesive curing, the use of standard specimens, and experiments at -253°C, the boiling point of hydrogen, exist, and are planned to be carried out in subsequent studies.
        4,000원
        5.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at 160˚C was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.
        4,000원