In neutron beam research, it is necessary for the shielding block and experimental equipment a dance floor in a nuclear reactor to travel in a fixed direction with little friction. However, precise travel is difficult to achieve due to factors such as vibration or gear backlash. We have imported air bearings from more developed nations to perform the role of moving instruments. In the beginning, an air bearing for use in three-dimensional measuring instruments similar to an air bearing was used; however, the performance was found to be insufficient. Accordingly, we collected data and conducted reverse engineering on this type of thrust pad. Through this process, it was confirmed that two issues were influencing the performance: the slant of the bottom of the air bearing and the bottom outside edge of the air bearing plate. The air bearing begins to move at 5 bar and moves smoothly without interruption at 7 bar. The result of this process was the development of a thrust pad which is superior in performance to the imported product and is being used in neutron beam research. We anticipate that this air bearing which has been developed will be used for experimental equipment which requires this type of precision in the future.
This paper describes the development of various lighting equipment adapting Ultra Constant Discharge Lamp that has newly been on commercial supply in the market. Meeting the required conditions of lighting equipment, various types of UCD Lamp equipment with excellent performances could be successfully developed. In order to provide a guideline for the economical lighting product selection, the analyzed data comparison between Hi-pressure Sodium Lamp which has been the most popular lamp for street lighting and UCD Lamp is provided. The conclusions of the study are made as follows; (1) The performance measurement result of UCD Lamp shows excellent Luminous Efficacy as 108Lm/W, daylight-like Color Rendering Index as 90Ra, and the best operating temperature range as -50℃~+85℃. Comparing to the Hi-pressure Sodium Lamp, UCD could be evaluated as much superior products. (2) In an assembled status with the lighting fixture (Type STB형-60W), UCD Lamp was tested OK for one hour duration at the temperature range form -50℃ to +85℃ and the humidity of 98%. The operation at the extremely low temperature can be an excellent feature to enable the export to the cold temperature regions such as Northern Europe and Russia and the specific applications for defense systems and special industry. (3) As UCD Lamp is a genuine Korea made product following Energy-saving and Eco-friendly policy, it should be appreciated as one of the best CO2 reduction Green product.
This Study is to suggest a method of effect evaluation of forest fire on governor station in shrub land. Theoretically, to evaluate effects of forest fire, it is combined that Spread Rate of Forest Fire, Flame Model, and Thermal Radiation Effects Model; i.e. a travel time of forest fire is calculated by Spread Rate of Forest Fire, fire-line intensity is calculated by Flame Model, and effects of fire-line intensity is affected by Thermal Radiation Effects Model. With the aforementioned method, we could carry out the effect evaluation of forest fire on governor station in shrub land and could distinguish scenarios to need protection plan from all scenarios.
The purpose of this paper is to investigate the relationship between static pressure recovery and velocity distributions in case of swirling flow into a conical diffuser. In this research, velocity distribution is measured by a multi-hole yaw-meter. The following conclusions can be drawn from the experiments. (1) The static pressure recovery depends strongly on the strength of a swirl. (2) A high pressure recovery coefficient is achieved by inserting a solid core into the diffuser center.