Multi-source evaporation is one of the methods to improve the thickness uniformity of thin films deposited by evaporation. In this study, a simulator for the relative thickness profile of a thin film deposited by a multi-source evaporation system was developed. Using this simulator, the relative thickness profiles of the evaporated thin films were simulated under various conditions, such as the number and arrangements of sources and source-to-substrate distance. The optimum conditions, in which the thickness uniformity is minimized, and the corresponding efficiency, were obtained. The substrate was a 5th generation substrate (dimensions of 1300 mm × 1100 mm). The number of sources and source-to-substrate distance were varied from 1 to 6 and 0 to the length of the major axis of the substrate (1300 mm), respectively. When the source plane, the area on which sources can be located, is limited to the substrate dimension, the minimum thickness uniformity, obtained when the number of sources is 6, was 3.3%; the corresponding efficiency was 16.6%. When the dimension of the source plane is enlarged two times, the thickness uniformity is remarkably improved while the efficiency is decreased. The minimum thickness uniformity, obtained when the number of sources is 6, was 0.5%; the corresponding efficiency was decreased to 9.1%. The expansion of the source plane brings about not only the improvement of the thickness uniformity, but also a decrement of the efficiency and an enlargement of equipment.
In this study, organic electroluminescent devices(OELD) with a structure of a glass substrate/ITO/TPD/Tb(ACAC)3(Phen-Cl)/Alq3/Al was fabricated by vacuum evaporation method, where Tb complex was known to have green light emitting property. Electroluminescent(EL) and I-V characteristics of this structure were investigated. This triple-layer structure shows the green EL spectrum at the wavelwngth of 546nm, which is almost the same as the PL spectrum of Pb(ACAC)3(PhenCl). It was found in current-voltage(I-V) characteristics of the devices that the operating voltage was about 12V.
Thin films of Eu(TTA)3(phen), which was known to show red-light emitting properties, were deposited under various deposition condition. The thickness, surface morphology, and photoluminescence(PL) were measured with α-step profiler, Atomic Force Microscopy(AFM), and PL measurement apparatus. It was found that the thickness of Eu(TTA)3(phen) film can be controlled precisely by adjusting the amounts of Eu(TTA)3(phen) in the boat. As the thickness of these films increases, the surface roughness also increases. A structure of Al/Eu(TTA)3(phen)(850a)/TPD(600a)/ITO was fabricated, Electroluminescence(EL) spectrum of which shows the peak at the wavelength of 618nm.
열증착법에 의해서 온도 85˚C인 glass기판 위에 CdS 박막을 제작하였다. 두께가 200nm정도로 측정된 CdS박막은 공기 중에서 온도 250˚C-550˚C범위에서 각각 30분간 열처리 되었으며 이들 시료에 대하여 4-point probe, XRD, SEM, UV-Spectrophotometer 및 광발광 측정으로 전기적 광학적 특성을 조사하였다. 이들의 일련의 실험값은 열처리 온도 370˚C 근처에서 구조의 변화를 보여주었는데, 열처리 온도에 대한 비저항아니 XRD, SEM 의 측정은 cubic로부터 hexagonal구조로의 변환을 나타내었다. 특히 상온에서 측정한 광발광에서 green edge emission(GEE)피이크가 2.42eV를 나타내었는데 이 때의 발광 중심은 열처리할 때 생긴 S-vacancy에 보상된 산소로 이루어진 'CdO'의 악셉터준위에 기인하는 것으로 해석되며 그 이온화 에너지는 약 0.16eV이었다.
본 연구에서는 X선 조사에 의해 생성된 전하의 이동현상을 조사하기 위해 비행시간 측정방법을 이용하였다. 이 측 정기술은 일반적으로 디지털 X선 영상 변환물질의 전하 트랩 및 수송현상에 유용한 방법이다. 비행시간 측정법을 이용 하여 a-Se 광도전체의 전하 수송자의 과도시간 및 이동속도를 측정하였다. 시편제작을 위해 열증착법을 이용하여 유 리기판위에 400 ㎛ 두께의 a-Se 필름을 제작하였다. 측정결과, 전자와 정공의 과도시간은 10 V/㎛의 전기장에서 각각 229.17 ㎲ 와 8.73 ㎲ 였으며, 이동속도는 각각 0.00174 ㎠/V․s, 0.04584 ㎠/V․s 였다. 측정결과, 전자와 정공의 이 동 속도의 측정값에 다소 큰 차이를 보였으며, 이 결과로부터 전하수송 및 트랩 기전을 분석하는데 이용하였다.