This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.
This study was carried out to get more operational characteristics of Anoxic(anaerobic)-Oxic-Anoxic-Oxic (AO)2 sequencing batch biofilm reactors (SBBRs) at the low TOC concentration. The operating time in anoxic (anaerobic) time to oxic time was 1:1. Experiments were conducted to find the effects of the aeration time distribution on the organic matters and nutrients removal. Three lab-scale reactors were fed with synthetic wastewater based on glucose as carbon source. During studies, the operation mode was fixed. The first aeration time to the second aeration time in SBBR-1 was 2:3, and those in SBBR-2 and SBBR-3 were 1:4 and 3:2, respectively. The organic removal efficiency didn't show large difference among three reactors of different aeration time distribution. However, from these study results, the optimum aeration time distribution in the first and the second aeration time for biological nutrient removal was shown as 3:2. The release of phosphorus was inhibited at the second non-aeration period because of the low TOC concentration and the nitrate produced by the nitrification at the first aeration period.
A laboratory experiment was performed to investigate phosphorus and nitrogen removal from synthetic wastewater by intermittently aerated activated sludge process packed with aluminum and silver plate. Three continuous experimental processes, i. e. an intermittently aerated activated sludge process(Run A), an intermittently aerated activated sludge process with an aluminum and silver plate packed into the reactor(Run B), and a reactor post stage(Run C) were compared. In the batch experiments, the phosphorus removal time in the reactor packed with aluminum and silver plate simultaneously was faster than that of the reactor packed with only an aluminum plate. More phosphorus was removed with an increase of NaCl concentration. The pitting corrosion of aluminum does not affect the performance of the biological treatment. The total nitrogen removal efficiency in Run B was 57% and 43.6% at the HRT of 12 and 6 hours respectively. The effluent PO4-P concentration as low as 1.0 mg/L could be obtainable through the continuous experiment in Run B at HRT of 6 hours.
Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter.
In this study, a 6 ℓ bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10,680 ㎎/ℓ, TKN : 6,893 ㎎/ℓ, NH_4^+ -N : 1,609 ㎎/ℓ, PO_4^3- -P : 602 ㎎/ℓ on average. The cycling time in SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and anoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT.
From the experimental results, the optimum cycling time for biological nutrient removal with night-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic). Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.5%, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.