사무엘 테일러 콜리지의(Samuel Taylor Coleridge)의 노수부의 노래 는 20 세기 중요한 철학적 개념이었던 실존주의에 나타난 부조리성 인식과 구원의 문 제를 매우 극명하게 보여주고 있다. 인간의 합리적 물음에 대답하지 않는 세계 의 비합리적인 침묵 사이의 대립 과정은 노수부가 겪게 되는 일련의 초자연적 인 상황을 통해 드러난다. 노수부의 노래 는 여러 부조리한 상황을 매우 사실 적으로 보여주고 있다. 이 작품은 여러 측면에서 현대 실존주의 문학이 천착하 고 있는 주제를 매우 선구적으로 보여주며, 궁극적으로 현대 실존주의적 관점에 서 삶의 부조리성과 구원의 의미를 제시한다. 이런 관점에서, 노수부가 겪게 되 는 과정을 통해 삶의 부조리한 비극을 촉발하는 것은 무엇이고, 극단적인 부조 리한 상황에 부닥쳤을 때 인간은 어떤 구원을 기대할 수 있으며, 또 그러한 구 원의 실질적인 의미는 무엇인지 살펴보는 것은 매우 의미 있는 시도라고 할 수 있다. 결론적으로 노수부는 자신의 행동에 대한 죄의식이라는 관점에서 인간이 처한 상황의 부조리성과 그것에 대한 자각을 통한 구원의 문제를 보여준다.
In this study, we investigated the dynamic stability of the system and the semi-analytical solution of the shallow arch. The governing equation for the primary symmetric mode of the arch under external load was derived and expressed simply by using parameters. The semi-analytical solution of the equation was obtained using the Taylor series and the stability of the system for the constant load was analyzed. As a result, we can classify equilibrium points by root of equilibrium equation, and classified stable, asymptotical stable and unstable resigns of equilibrium path. We observed stable points and attractors that appeared differently depending on the shape parameter h, and we can see the points where dynamic buckling occurs. Dynamic buckling of arches with initial condition did not occur in low shape parameter, and sensitive range of critical boundary was observed in low damping constants.
본 논문은 미국의 싱어송라이터 테일러 스위프트가 2017년 11월 발표한 정규앨범「Reputation」의 수록 곡 중 빌보드 차트에서 1위를 기록한‘Look What You Made Me Do’를 음악적 관점과 음향적 관점의 두 부분으로 나누어 분석하였다. 음악적 요소로는 멜로디 진행과 화성 진행 그리고 악기 편성 및 구성, 기본 악기 연주 패턴을 분석하였고 음향적 요소로는 피치 쉬프트와 하이컷 필터, 신스 베이스 음색, 글라이드 기법, 효과음을 분석하였다. 본 논문이 완성도 있고 상업적으로 성공을 거둔 음악을 분석하고 연구함에 있어 작은 참고가 되기를 바라며 해당 연구에서 다루어지지 않았던 다양한 기법들의 연구가 앞으로 지속적으로 이루어지길 기대한다.
The flow between two rotating concentric cylinders, also known as Taylor-Couette flow system, is one of the most widely studied systems in the classical fluid dynamics. In this work, a two-dimensional Taylor-Couette flow system is simulated using the lattice Boltzmann method combined with the smoothed profile method. The fluid flow between the rotating cylinders is solved by lattice Boltzmann equation while the curved boundaries of the cylinders are treated with a smoothed profile function. To assess the validity of the present simulation technique, three different cases of rotation of the cylinders were considered: ⅰ) inner cylinder is only rotating, ⅱ) outer cylinder is only rotating, and ⅲ) both inner and outer cylinders are rotating. For all the three cases, the numerical results of the flow velocity in azimuthal direction and the hydrodynamic torque acting on the cylinders are in good agreement with the corresponding analytical solution results.
In the development of linear perspective, Brook Taylor's theory has achieved a special position. With his method described in Linear Perspective(1715) and New Principles of Linear Perspective(1719), the subject of linear perspective became a generalized and abstract theory rather than a practical method for painters. He is known to be the first who used the term ‘vanishing point’. Although a similar concept has been used form the early stage of Renaissance linear perspective, he developed a new method of British perspective technique of measure points based on the concept of ‘vanishing points’. In the 15th and 16th century linear perspective, pictorial space is considered as independent space detached from the outer world. Albertian method of linear perspective is to construct a pavement on the picture in accordance with the centric point where the centric ray of the visual pyramid strikes the picture plane. Comparison to this traditional method, Taylor established the concent of a vanishing point (and a vanishing line), namely, the point (and the line) where a line (and a plane) through the eye point parallel to the considered line (and the plane) meets the picture plane. In the traditional situation like in Albertian method, the picture plane was assumed to be vertical and the center of the picture usually corresponded with the vanishing point. On the other hand, Taylor emphasized the role of vanishing points, and as a result, his method entered the domain of projective geometry rather than Euclidean geometry. For Taylor's theory was highly abstract and difficult to apply for the practitioners, there appeared many perspective treatises based on his theory in England since 1740s. Joshua Kirby's Dr. Brook Taylor's Method of Perspective Made Easy, Both in Theory and Practice(1754) was one of the most popular treatises among these posterior writings. As a well-known painter of the 18th century English society and perspective professor of the St. Martin's Lane Academy, Kirby tried to bridge the gap between the practice of the artists and the mathematical theory of Taylor. Trying to ease the common readers into Taylor's method, Kirby somehow abbreviated and even omitted several crucial parts of Taylor's ideas, especially concerning to the inverse problems of perspective projection. Taylor's theory and Kirby's handbook reveal us that the development of linear perspective in European society entered a transitional phase in the 18th century. In the European tradition, linear perspective means a representational system to indicated the three-dimensional nature of space and the image of objects on the two-dimensional surface, using the central projection method. However, Taylor and following scholars converted linear perspective as a complete mathematical and abstract theory. Such a development was also due to concern and interest of contemporary artists toward new visions of infinite space and kaleidoscopic phenomena of visual perception.
테일러 와류흐름 여과에서 평균기공 1.2 μm인 셀룰로우스 에스테르 정밀막으로 이루어진 내부원통의 회전속도와 슬러리의 농도, 입자의 크기에 따른 여과선속의 변화를 실험을 통하여 알아보았다. 여과선속은 압력차에 비례하고 저항에 반비례하였으며, 시간에 따른 케이크 층의 저항 변화를 회전속도, 슬러리의 농도, 입자의 크기에 따라 검토하였다. 회전속도가 증가할수록 케이크 저항이 감소하고 짧은 시간에 준정상 상태에 도달하였다 슬러리의 농도를 증가시킬수록 초기 저항이 급격히 증가하였고 높은 저항값에서 준정상 상태가 유지되었으나, 준정상 상태에 도달하는 시간은 농도에 무관하였다. 입자 크기가 작을 때 저항이 크게 나타남을 관찰하였는데, 입자 크기가 작을수록 막 기공을 막을 확률이 더 높고 전단력에 의해 영향을 덜 받기 때문이라 생각할 수 있다. 본 연구에서 제안한 모델식은 입자의 퇴적과 제거항으로 나누어져 있는데, 실험상수의 평균값을 사용하여 실험결과와 잘 일치하였다.
We have simulated the interaction of supernova remnants with constant ambient medium to explore the dynamics of Type Ia supernova remnant. We assumed the supernova ejecta density distribution of the central constant and the outer power-law density distribution(ρ∝γ−n) (ρ∝γ−n) . We have calculated four different cases with different n. By scaling the length and time scales from the initial parameters-ejecta mass, ejecta energy, the ambient density, we could compare effects of the different density distribution of the ejecta on the dynamics of the SNRs. The radius of the outer forward shock converges the Sedov-Talyor solution at t' = 2.3 when the swept-up mass is 8 times of the ejecta mass. On the other hand, the motion of the reverse shock are largely affected by n. The ejecta with smaller n takes comparably long time to thermalize the whole ejecta at t′≃5.3,Msw≃18Mej t′≃5.3,Msw≃18Mej . We have applied our calculated results to obtain the ejecta density distributions of Tycho and SN1006 with n≃6 n≃6 .
The objective of this study is to analyse the dynamic stable and unstable behaviours of a space truss using an accurate solution obtained by the high-order Taylor method. Because numerical solutions can lead to incorrect analyses in the case of a space truss model due to the being parameters large, we analyse the solution’s behaviour using essentially an analytical solution obtained by the multi-step high-order Taylor method. In detail, the dynamic instability and buckling characteristics of the SDOF model under step, sinusoidal and beating excitations are investigated.