검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is a representative processing technology applied in many industrial sites due to its quality and convenience. In particular, fiber laser welding can be welded at a faster speed compared to arc welding, and there is an advantage in welding distortion, which is the most significant disadvantage of welding. In this study, the weldable thickness was predicted, and the optimal welding angle was estimated using simulations during the welding of the T-shape structure. The multi-layer heat source model proposed in the previous author's study was used, and the study was conducted using the proposed welding heat source under specific conditions of 4kw and 1.0m/min. As a result, it was predicted that high-quality welding would be possible when the thickness was 3mm or 4mm, and it was also confirmed that welding should be performed at an angle of 82.5° or more when welding a 3mm thick structure. As a follow-up study, we plan to build a welding heat source model under various conditions and conduct a study to derive welding conditions at various thicknesses.
        4,000원
        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to environmental pollution, regulations on existing petroleum-based fuels are increasing day by day. LNG is in the spotlight as an eco-friendly fuel that does not emit NOx or SOx, but its boiling point is -163°C, so it needs to be handled with care. Materials that can be used at the above temperature are defined by IMO through the IGC Code. Among them, 9% nickel steel has great advantages in yield strength and tensile strength under cryogenic conditions, but it is difficult to use in arc welding such as FCAW for various reasons. This study is a study to apply fiber laser welding to solve this problem. As a previous study, this study conducted a study to find a welding heat source. After performing bead on plate welding, the optimal heat source was derived by analyzing the shape of the bead and adjusting the parameters of the heat source model. In this case, by applying the multi-island genetic algorithm, which is a global optimization algorithm, not the intuition of the researcher, accurate results could be derived in a wide range.
        4,000원
        3.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization(IMO), the number of ships fueled by Liquefied Natural Gas(LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In this study, a study on penetration (HAZ depth, Penetration) and welding defects during fiber laser welding according to three types of shielding gases(nitrogen, argon, and helium) was conducted. To this end, a Bead on plate(BOP) experiment was performed under four fiber laser conditions(Power, Speed) for each shielding gas and welding defects caused by the use of the shielding gas were compared through cross-sectional observation, and the penetration depth was analyzed.
        4,000원
        4.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. Based on the methodology performed in previous studies, the welding heat source was found through experiments and FEM under the welding power conditions of three cases and the parameters of the welding heat source were analyzed according to the welding power. In this study, parameters of fiber laser welding heat source according to welding power were searched through optimization algorithm and finite element analysis, and the correlation was analyzed. It was confirmed that the concentration of the welding heat source in the 1st layer was high regardless of the welding power, and it was confirmed that the concentration of the welding heat source in the 5th layer (last layer) increased as the welding power increased. This reflects the shape of the weld bead that appears during actual fiber laser welding, and it was confirmed that this study represents the actual phenomenon.
        4,000원
        5.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a welding heat source model was presented and verified during fiber laser welding. The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. It consists of a total of 12 parameters, and an optimization algorithm was used to find them. As optimization algorithms, adaptive simulated annealing, multi island genetic algorithm, and Hooke-Jeeves technique were applied for comparative analysis. The parameters were found by comparing the temperature distribution when the STS304L was bead on plate welding and the temperature distribution derived through finite element analysis, and all three models were able to derive a model with similar trends. However, there was a deviation between parameters, which was attributed to the many variables. It is expected that a more clear welding heat source model can be derived in subsequent studies by giving a guide to the relational expression and range between variables and increasing the temperature measurement point, which is the target value.
        4,000원
        6.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is the most widely used technology for manufacturing in the automobile, and shipbuilding industries. Fiber laser welding is rapidly introduced into the field to minimize welding distortion and fast welding speed. Although it is advantageous to use finite element analysis to predict welding distortion and find optimized welding conditions, there are various heat source model for fiber laser welding. In this study, a welding heat source was proposed using a multi-layered heat source model that encompasses most of the existing various welding heat source models: conical shape, curved model, exponential model, conical-cylindrical model, and conical-conical model. A case study was performed through finite element analysis using the radius of each layer and the ratio of heat energy of the layer as variables, and the variables were found by comparing them with the actual experimental results. For case study, by applying Adaptive simulated annealing, one of the global optimization algorithms, we were able to find the heat source model more efficiently.
        4,000원
        7.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the laser welding experiments were performed with the 1 mm thickness of Al 6061-T6 using by 5 kW fiber laser welding system. The optimum laser welding condition of the lap joint has been investigated by analyzing the penetration depth and the porosity fraction through observation of the cross-sections. Based on the test results, the sound joint was obtained from the welding condition with the power of 2 kW and the focal position of -0.8 mm at the continuous laser welding speed of 2 mpm. Also, the tensile strength of the sound joint after heat treatment(170℃, 12hr) was increased almost 87% that of the base material. Especially, the fatigue test result of the sound joint showed that the fatigue cycle was 3×10 4 at the highest test load of 100 MPa.
        4,000원
        8.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fiber laser welding has been developed for precise welding of small and complicate components assembled on the nuclear fuel irradiation test rig. In this research, laser welding characteristics of STS316L, the main material of nuclear fuel test rig, have been studied. Several welding experiments were carried out in lap welding of the tube and the end cap made of STS316L. Process variables such as non-focal length, shield gas, laser frequency and power are optimized and compared with the results of Zircaloy-4.
        4,000원
        9.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, the automotive industry has target to improve the fuel consumption due to restricted exhaust gas regulation. For this reason, the applicability of lightweight material, Al alloys, Mg alloys are also being expanded. In this concept, high strength steel, DP780 and light alloy, AL5052 are joined in the right place of the car body. However, it is difficult to join to steel and aluminum by conventional fusion welding. Generally, in respect to dissimilar metal joining by fusion welding, intermetallic compound layer formed at joint interface; hot cracking in generated. To evaluate the welding quality, tensile test and metallographic examination was carried. Especially, correlation between Heat per unit length and formation of intermetallic compound layer was minutely analyzed. Finally, optimal welding condition was selected for improvement of strength at weldment and practical use.
        4,000원