검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 20

        4.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        레이저 용발법에 의한 금속 표면 제염특성을 평가하였다. 레이저로는 파장 532 nm, 펄스에너지 150 mJ, 펄스폭 5 ns의 큐스위치 Nd:YAG 를 적용하였고, 금속 표면에 CsNO3, Co(NH4)2(SO4)2, Eu2O3 그리고 CeO2를 오염시켜 이들의 제염 특성을 평가하였다. 제염 변수로는 레이저 적용횟수, 레이저 에너지 밀도 및 레이저 조사 각도 특성을 평가하였으며 각각 8, 13.3 J/cm2 및 30o의 최적 조건을 확인하였다. 제염 효율은 오염성분의 비점과 관련이 있었으며 CsNO3>Co(NH4)2(SO4)2>Eu2O3>CeO2 순이었다. 또한 여러 에너지 밀도 조건에서 스테인레스 스틸 재질의 식각 깊이 제어 특성을 규명하였다.
        4,000원
        5.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        핵연료 운반용 실린더의 재사용을 위한 용기세척공장의 제염공정에 대한 성능을 평가하기 위하여 Na2CO3 + H2O2 혼합용액의 조합을 약간 달리한 2회의 시험을 실행하였다. 각 시험은 모두 일련의 5 단계에 걸쳐 실시되었다. 우라늄 제염의 주 화학종은 Na4UO2(CO3)3 로 식별되었다. 그리고 첫 단계에서의 세척액은 물이었으며, 이 단계에서 50% 이상의 우라늄이 제염되었다. 그 이후로는 단계가 더해 갈수록 우라늄의 제염양은 지수함수적으로 감소하는 경향을 나타내었으며, 화학양론적으로 제거된 우라늄에 비하여 투여된 Na2CO3 의 양은 과다함을 나타내었다. 이러한 결과들에 의하면, 공정최적화를 통하여 Na2CO3 의 투여량 감축, 세척폐액의 감량, 제염단계 축소 등을 꾀할 수 있을 것으로 판단된다.
        4,000원
        11.
        2008.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 플라즈마 제염 기술의 실용화를 위해 , , 등의 반응성 플라즈마 기체를 이용하여 원자력 시설의 주요 오염원인 코발트 핵종에 대한 표면 제염 모의실험을 수행하였다. 디스크 형태의 금속코발트에 대하여 시편 표면 온도를 변수로 플라즈마 식각 실험을 수행한 결과 반응율은 에서 기체의 경우 그리고 와 기체의 경우 각각 과 이었으며, 이들 반응의 활성화에너지는 각각 39.4 kJ/mol, 42.1 kJ/mol, 116.0 kJ/mol이었다. 이와 함께 AES (Auger Electron Spectroscopy)를 이용하여 반응 생성물 성분 분석 결과 이들 반응의 주요 반응 기구는 코발트의 불화 반응임이 밝혀졌다. 이 연구를 통해 확보된 의 금속 표면 식각율은 주요 반도체 공정의 식각율을 뛰어넘는 높은 식각율로 플라즈마 제 염 기술의 실용화를 앞당길 수 있는 고무적인 결과라 할 수 있을 것이다.
        4,000원
        20.
        2017.11 서비스 종료(열람 제한)
        원자력발전소가 폐로 단계에 도달하게 될 경우, 다량의 방사성물질 및 폐기물이 발생한다. 특히, 해체 시 발생되는 콘크리트 폐기물은 경제적, 환경적 측면을 고려해서 재사용, 재활용, 처분 등이 관리방법 중 가장 적합한 방법을 선정해야 한다. 원자력시설의 해체 시 발생하게 되는 콘크리트 폐기물은 80%이상을 차지하고 있으며, EC(European Commission)의 보고서에 의하면 2060년까지 원자력 시설의 해체에 따라 유럽에서만 약 500만 톤의 콘크리트 폐기물이 발생할 것으로 예상하고 있다. 이러한 막대한 양의 콘크리트 폐기물에 대해 프랑스, 일본, 벨기에 등에서는 이미 콘크리트 폐기물의 제염 및 저감에 대한 연구가 심도 있게 진행 중에 있으며 프랑스의 경우에는 실험적인 연구를 거쳐서 상용화 수준에 다다른 실정이다. 콘크리트 폐기물은 원자력시설에 제한적으로 재활용이 가능하며, 방사성 폐기물의 저장 및 기반시설의 건설, 방사성 폐기물 처리에 사용되는 콘크리트 고화체, shielding block, backfiller 등으로 사용되고 있다. 해체 콘크리트 폐기물은 용적오염과 표면 오염으로 이루어져 있으며 대부분 표면으로부터 약 1∼10mm 두께로 오염되어 있어 기계적 처리 방법을 통해 방사성 폐기물로서 처리되어야 한다. 방대한 양으로 발생되는 콘크리트 해체폐기물을 자체처분 하거나 재활용한다면 처분 대상 폐기물량의 감소로 인한 처분 비용의 절감 및 처분 안전성의 증대뿐만 아니라 자원의 재활용성을 증대시킨다는 점에서 매우 긍정적인 측면을 나타낸다. 원자력시설의 콘크리트 제염기술로는 물리적 방법을 사용한 제염기술이 주로 사용되며 이를 다시 세분화 하면 표면제염기술과 표면파쇄제염으로 구분된다. 방사성 콘크리트의 물리적 표면제염 공정 및 장치 선정시에는 오염확산 및 작업자의 방사능 피폭 최소화, 제염 폐기물의 최종 처리방법, 제염 작업 최적화를 위한 최단, 최소 작업과 장소, 대상, 목적 등을 고려하여 제염기술이 선정되어야 한다. 이는 곧바로 방사능 구역에서의 작업자의 안전성 향상 및 해체비용 절감과 직결되기 때문이다. 그러나 원자력이라는 특수한 상황에서는 최적의 기술 선정시 경제적인 측면 보다는 안전성에 바탕을 두고, 주위 환경이 오염을 최대한 억제하는 방법에 초점을 맞추어야 할 것이다.