인간 활동으로 광범위한 자연 생태계 변화로 지난 몇 세기 동안 전 세계적으로 생물다양성이 심각하게 위협받고 있다. 생태계의 변화 양상을 파악하는 것은 생물다양성 위협을 파악하고 관리하는 데 필수적이다. 이러한 필요성에 따라 IUCN 의회는 2019년에 생태계의 기능과 유형을 고려한 IUCN Global Ecosystem Typology(GET)를 구성했다. IUCN은 10개의 생태계 군계, 108개의 생태기능별 토지 유형(EFG; Ecological Functional Group)을 전 지구적 범위에서 지도로 제공하고 있다. IUCN GET 생태계의 유형 분류에 따르면 국내 생태계는 Realm (1수준)이 8개, Biome (2수준)이 18개, Group (3수준)은 41개 유형으로 분류된다. IUCN이 제공하는 GET의 경우 전 세계 규모로 제작되었기 때문에 해상도가 낮고 실질적인 토지 현황과 일치하지 않는 경우가 많다. 본 연구는 토지피복지도를 활용하여 국내 IUCN GET 유형 분류의 정확도를 높이고 실질적인 현황 을 반영한 지도를 제작하고자 했다. 이를 위해 ① IUCN GET에서 제공하는 국내 GET 데이터 체계를 검토하고, ② 이를 국내 현황과 비교 분석하였다. 이 과정을 통해 GET의 한계와 활용 가능성을 평가하고 ③ 이후 국가자료를 최대 한 활용하여 국내 현황을 반영한 국내 GET 유형 분류를 수행하였다. 본 연구는 토지피복지도와 기존 국가자료를 최대한 활용하여 국내 GET를 총 25개 유형으로 분류했다(Terrestrial Realm :9, Freshwater: 9 Marine-Terrestrial:5, Terrestrial-Freshwater :1, Marine-Freshwater-Terrestrial:1). 기존 지도와 비교했을 때 수정된 국내 GET의 경우 ‘F3.2 Constructed lacustrine wetlands’, ‘F3.3 Rice paddies’, ‘F3.4 Freshwater aquafarms’, ‘T7.3 Plantations’가 면 적이 가장 많이 축소되었다. 온대 산림(T2.2)의 면적이 가장 많이 늘어났고, ‘MFT1.3 Coastal saltmarshes and reedbeds’, ‘F2.2 Small permanent freshwater lakes’등 3개 유형 또한 수정 후 GET 면적이 증가했다. 해당 과정을 통해 기존 GET에서 모든 EFG의 합이 국토 면적의 8.33배를 차지하던 기존의 지도를, 토지피복지도를 활용하여 총합 이 국토 면적의 1.22 배가 되도록 수정하였다. 이를 통해 유형별 차이가 작고 정확성이 떨어진 기존의 EFG가 본 연구를 통해 개선 및 수정되었음을 확인하였다. 본 연구는 현장 요건을 반영한 데이터를 최대한 활용하여 GET 기준 에 상응하는 한국의 GET 지도를 제작한 것에 그 의의가 있다.
모기는 감염병을 매개하는 생물종으로서 인간생활에 불편을 야기하며, 교통 및 운송수단 등의 발달로 인해 새로운 질병 도입 및 질병 매개체의 확산에 대한 우려가 증가하고 있는 실정이다. 환경부 토지피복지도 분류체계와 연계하여 모기가 발생 가능한 서식지 유형을 파악하고, 각각의 서식지 유형 특성에 따라 출현 가능한 모기 종류를 함께 구분하였다. 또한 모기의 생태적 특성을 고려하여, 서식지 유형별로 최적의 방제 방법을 제시하였다. 도심지역은 위생 해충의 발생원이 다양한 서식지가 분포하는 지역으로, 최소 환경 조건만 갖춰진다면 모기가 대량 발생하기 적합한 환경일 것으로 보인다. 발생원이 광범위하기 때문에 유충과 성충 방제를 같이 수행하며, 시민들을 대상으로 방제 교육이나 홍보물을 배부하여 적극적인 방제의식을 함양시키는 것이 효과적일 것으로 판단된다. 농업지역의 경우, 저수지나 늪지, 논 등의 정수역에서 모기 유충의 서식밀도가 높을 것으로 예상되어 천적생물을 이용한 생물학적 방제를 이용하면 개체수를 조절하는 데 유용할 것으로 보인다. 산림지역은 흰줄숲모기 (Aedes albopictus)의 주요 서식지로서 무분별한 산림벌채를 최소화하고 인근 거주민을 대상으로 물리적 방제를 실시해야 할 것으로 판단되며, 기타지역은 수생태계를 중심으로 발생 가능한 모기유충을 방제하기 위해 생물학적 방제와 Bti를 이용한 화학적 방제가 병행되어야 할 것으로 보인다. 본 연구는 서식지를 크게 4가지 (도심지역, 농업지역, 산림지역, 기타지역)로 분류하여 모기에게 적합한 서식지를 고찰하였으며, 모기 서식지별로 적합한 방제법을 제시하였다. 모기의 개체수를 보다 효율적으로 조절하고, 하절기 시민들의 불편과 피해를 감소시킬 수 있는 기초자료로 제공할 수 있을 것으로 전망한다.
오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신 (SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교・분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함 한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.
이 연구에서는 극궤도 기상위성인 NOAA/AVHRR 시계열 자료를 이용하여 한반도의 지면 피복을 분류하였다. 일주기 기상위성자료로부터 구름이 없는 상태의 지면상태 자료를 획득하기 위하여 10일 간격 최대치 합성법 자료를 작성하였으며 27개의 10일주기 식생지수 자료들(겨울철 12, 1, 2월 자료 9개 제외)로부터 4개의 식생 계절성 자료를 작성하였다. 또한 위성자료로부터 분석한 연 최고 및 연평균 지면온도, 그리고 지형고도 자료를 이용하였다. 각 지면 피복에 대한 특성 자료 수집이 어렵기 때문에 여기서는 2단계 무감독 분류법을 이용하였다. 즉, 초기 입력자료는 신경망 기법의 일종인 SOFM을 이용하여 군집화한 다음 결정나무를 이용하여 각 군집을 분류하였다. 최종 분류 결과는 식생지수의 시계열과 지상 자료로 검증한 결과 대도시, 농지, 낙엽수림 및 상록수림 등 우리 나라의 지면 피복을 개략적으로 잘나타내고 있는 것으로 판단된다.
This study aims to increase the ability to adapt to the ecosystem and promote a sustainable use of the natural environment, by classifying the types of damaged lands according to various factors, such as the characteristics of the target area and form, cause, and impact of damage. Moreover, the study suggests the development of evaluation categories and criteria by each type. The results obtained are as follows: first, for the assessment of damaged lands, the changed areas were identified utilizing land cover maps. Video analysis was performed to increase the accuracy, and 88 sites were obtained. Second, the types of damage were classified into ecological infrastructure and ecological environment, and the sub-factors of the cause of damage were classified into 12 factors. Third, each evaluation system for the types of damage was composed of four steps, considering each type of damage and the level of evaluators being higher than paraprofessionals. To supplement this study, it will be necessary to utilize the database of damaged lands other than the Seoul Metropolitan Area and conduct an on-site survey for verification in the future.
본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성 영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
본 논문의 목적은 위성영상 피복분류항목에 대해 통계적 접근법으로부터 산정된 유출곡선지수(CN)를 이용하여 계산 유효우량과 관측 유효우량을 비교함으로써 그 적용성을 검토하는데 있다. 검정을 위한 적용대상지역은 경안천 수위지점 상류유역, 백옥포 수위지점 상류유역, 괴산댐 수위지점 상류유역으로 선정하였으며 각 지역별로 4개의 홍수사상을 선정하였다. CN 값 산정을 위해 2000년에 획득된 Landsat-7 ETM 영상을 이용하여 토지이용도를 구축하였으며 개략
본 연구의 목적은 미국 토양보존국(SCS)의 피복분류에 따른 유출곡선지수(CN) 값을 이용하여 위성영상 피복분류 항목에 대한 CN 값을 제시하는데 있다. 이를 위하여 SCS의 각 피복항목별 정의와 유역의 CN값 산정 방법에 대해서 연구하였다. 위성영상 피복분류 항목에 대한 CN값 산정방법으로 통계적 접근법을 사용하였으며 공간해상도에 따라 대분류, 중분류, 세분류로 구분된 환경부의 위성영상 피복분류항목에 대한 CN 값을 산정하였다. 본 연구의 결과는 향후
GIS기법과 원격탐사 기법은 수문학의 지형자료 구축과 응용 분야에 활발하게 이용되고 있으며 다방면에서 많은 연구가 진행 중이다. 본 연구에서는 산악지역에서 토양 특성과 토지 피복 상태에 따라 유출 특성이 어떻게 나타나는지를 CN값을 산정하여 평가 하였다. 토지 피복 분류에 신경망 기법을 사용하여 보다 적합한 분류 방법을 모색하고자 했고, CN값 산정을 위한 연산에 GIS기법출 사용하였다. 우선 샘플지역을 선정하여 토지 피복의 정확도를 평가하면, 기존의
유출에 대한 신속하고 정확한 예측은 수문 및 수자원 분야에 있어서 궁극적인 목표 중의 하나이며, 우리나라와 같이 강우에 대한 유출의 응답이 짧은 시간에 발생하는 경우에 무엇보다도 중요하다. 따라서, 토지이용변화 등에 의한 유출의 변화 및 감시를 포함하는 유역내의 수문 변수의 변화를 적절하게 고려할 수 있는 분포형 자료를 선호하게 된다. 이때 분포형 모형을 적용시키기 위해서는 강우의 공간특성을 알아야 하며, 각 격자별 강우량이 입력자료로 활용되어 각 격자