휘발성 지방산의 생성 및 회수를 위한 분리막의 유효성을 실험적으로 검토한 결과, 분리막의 적용에 의해 발효조 내의 부유고형물 농도, 유기산 생성균수 및 유기산 농도가 증가하였다. 혐기성 발효액의 고액분리 및 발효 효율향상을 위한 분리막의 적용은 발효조 내의 관련 미생물 농도를 증가시키고 따라서 분리막을 적용하지 않은 경우에 비해 유기산 생성효율이 훨씬 증가하였다. 분리막이 결합된 산 발효조의 적용은 유기성 슬러지로부터 휘발성 지방산의 회수 효율증대에 효과적인 적용기술이라 판단된다.
혐기성소화 공정은 기본적으로 가수분해단계(Hydrolysis), 산생성 단계(Acidogenesis), 메탄생성단계(Methanogenesis) 총 3단계로 구분지울 수 있으며, 메탄생성단계에서 아세트산(Acetic acid)과 수소 등의 유기물이 메탄으로 전환되면서 혐기발효의 안정화가 이루어진다. 유기성 폐기물의 혐기성 소화는 유기성 폐기물을 기질로 하여 가수분해와 산발효 및 메탄발효 과정을 통하여 메탄으로 생성된다. 혐기 발효 시 유기산과 pH 변화는 혐기발효의 중요한 영향인자 중 하나이며, 혐기 발효의 안정성을 판단할 수 있는 지표가 된다. 본 연구에서는 보편적으로 사용되는 단상 혐기 발효조를 이용하여 투입되는 유기물(VS)농도, 원료배합(돈분 중 분 성분이 30%, 뇨 성분이 70%) 등 운전조건의 변화에 따라 유기성 폐기물의 혐기성 발효가 진행되는 과정을 분석하였으며, 발효 과정 중 생성되는 아세트산, 프로피온산, 부틸산 등 총 9종류의 유기산 분석과 이에 따른 바이오가스 생산량과 메탄발생량을 분석하였다. 혐기성 발효조는 호기성 산화열을 이용하여 혐기성 소화조를 간접적으로 가온하였으며, 중온 혐기성 소화를 진행하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L, CASE 3는 음식물류 폐기물 8kg과 물 20L의 조건으로 실험을 진행하였다. 본 실험에서 혐기성 소화조의 pH는 평균 8.17로 나타내어 안정적인 혐기 소화 효율을 나타내었다. 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기성 발효 과정 중 생성된 유기산의 농도는 33.67∼1,452.81mg/L로 분석되었다. 일반적으로 혐기발효시 안정적인 VFA의 농도는 500mg/L 이하이며, 운전기간 동안 전체 유기산 농도는 432.86mg/L로 분석되어 안정적인 혐기 발효가 진행되었다고 판단하였다. 바이오가스 발생량의 경우 CASE 1에서 0.29~0.31㎥/day로 나타났으며, CASE 2는 0.325㎥/day로 나타났다. 본 연구를 통하여 혐기 발효시 발생되는 유기산 농도와 pH 변화에 따라 유기성 폐기물의 혐기 발효 시 안정성을 판단한 결과 운전기간 동안 혐기발효는 안정적으로 이루어 졌다고 판단되었다.
본 연구에서는 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물의 전처리를 통해 액상의 고농도유기성폐기물만을 혐기성소화조에서 병합처리하여 Pilot Plant의 바이오가스 발생량 및 유기성폐기물 제거 효율에 대해 검토하였으며, 수리학적 체류시간은 50일로 49일간 실험을 진행하였다. 혐기성소화조에 투입되는 유기물농도, 원료 배합비율 등 운전조건에 따른 유기물 제거효율, 바이오가스 생산량 및 메탄농도 등을 분석한 결과 혐기성소화조로 투입되는 유기물의 VS함량을 약 6.83%로 일정하게 유지하여 안정적으로 혐기성소화를 진행하여 바이오가스 생산량은 220~540L/day・m³로 혐기성미생물의 분해능이 안정화됨에 따라 점차 증가하는 경향을 나타내었으며, 이 때 메탄농도는 62~70%까지 상당히 높은 수준의 메탄함량을 나타내었다. CODcr제거율 및 VS제거율은 각각 49.83~75.84%, 76.83~88.32%로 분석되었으며, VS제거율의 경우 상당히 높은 수준의 유기물제거효율을 나타내어 혐기성미생물에 의한 유기성폐기물의 분해가 활발히 진행되었음을 알 수 있다. 혐기성소화조로 투입되는 원료의 유기물함량이 큰 편차 없이 일정한 함량으로 투입되어 혐기성미생물의 효율적인 활동을 통해 바이오가스 생산량이 점차 증가하는 경향을 보였으며, 안정적인 소화가 이루어진 것으로 판단된다. 또한 실험 23일차부터 바이오가스 생산량은 400~500 L/day・m³로 비슷한 양의 바이오가스 발생하였는데 이를 통해 본 실험의 혐기성소화가 23일 이후부터 안정화되어 유기물분해가 이루어진 것을 알 수 있다.
최근 주거지역 내에서 발생되는 음식물류 폐기물에 대한 관리 및 수거 시스템의 일환으로 가정용 오물분쇄기의 도입이 고려되고 있다. 이와 더불어 가정용 오물분쇄기를 통해 수거되는 음식물류 폐기물의 처리와 에너지화를 동시에 달성할 수 있는 혐기성 소화 공정이 관심을 받고 있다. 가정용 오물분쇄기를 이용하여 음식물류 폐기물을 수거하는 경우 세제의 주성분인 음이온 계면활성제가 잠재적으로 유입 또는 농축될 수 있다. 음이온 계면활성제인 LAS(Linear Alkylbenzene Sulfonate)는 ABS(Acrylonitrile Butadiene Styrene)의 대체 성분으로 생분해도가 높고 친환경적이라고 알려져 있으나 혐기성 상태에서 완전히 분해되지 않는다. 따라서 계면활성제 또는 계면활성제의 주성분인 LAS의 혐기성 메탄 생성에 대한 연구가 많은 연구자들에 의해 수행되었으며 일정 농도 이상에서는 메탄 생성에 저해를 주는 것으로 나타났다. 그러나 계면활성제 또는 LAS가 혐기성 수소 발효에 미치는 영향에 대한 연구는 거의 미미한 실정이다. 따라서 본 연구에서는 일련의 회분식 실험을 통해 LAS가 혐기성 수소 발효에 미치는 영향을 평가하였다. 수정 Gompertz식을 이용한 비선형회귀분석 결과 LAS의 농도 증가에 따라 최대 수소 발생량은 선형적으로 증가하였으나 수소 발생율은 일정 농도 이상의 LAS가 투입되는 경우 점차 감소하는 결과를 보여 잠재적인 저해현상을 나타내었다.