The performance of the new aerobic digestion system combined with inorganic sludge separation unit and sludge solubilization unit, CaviTec II, is evaluated. Anaerobic digester effluent sludge is used for feed sludge of CaviTec II system. By addition of CaviTec II, the amount of cake generated is reduced by 27%, and the soluble nitrogen is reduced by 92%.
In the general process of design for aerobic digestion, the design for field plant of which inflow pattern is continuous inflow is performed using the results from lab scale batch reactor. However, the recent researchers reported that the general designs were performed as over-estimated, Therefore, in this study, laboratory batch experiments were carried out at $20^{\circ}C$ and pH 7.5 on the aerobic digestion of waste activated sludge at different solid levels. This treatise could consider the negligence about effective digestion periods the usage of VSS as solid concentration, and the effect of initial solid concentration of solid degration rate coefficient($k_d$) as reasons of the overestimated design, and showed the scheme of how to design for aerobic digestion from batch experiment.
본 연구에서는 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물의 전처리를 통해 액상의 고농도유기성폐기물만을 혐기성소화조에서 병합처리하여 Pilot Plant의 바이오가스 발생량 및 유기성폐기물 제거 효율에 대해 검토하였으며, 수리학적 체류시간은 50일로 49일간 실험을 진행하였다. 혐기성소화조에 투입되는 유기물농도, 원료 배합비율 등 운전조건에 따른 유기물 제거효율, 바이오가스 생산량 및 메탄농도 등을 분석한 결과 혐기성소화조로 투입되는 유기물의 VS함량을 약 6.83%로 일정하게 유지하여 안정적으로 혐기성소화를 진행하여 바이오가스 생산량은 220~540L/day・m³로 혐기성미생물의 분해능이 안정화됨에 따라 점차 증가하는 경향을 나타내었으며, 이 때 메탄농도는 62~70%까지 상당히 높은 수준의 메탄함량을 나타내었다. CODcr제거율 및 VS제거율은 각각 49.83~75.84%, 76.83~88.32%로 분석되었으며, VS제거율의 경우 상당히 높은 수준의 유기물제거효율을 나타내어 혐기성미생물에 의한 유기성폐기물의 분해가 활발히 진행되었음을 알 수 있다. 혐기성소화조로 투입되는 원료의 유기물함량이 큰 편차 없이 일정한 함량으로 투입되어 혐기성미생물의 효율적인 활동을 통해 바이오가스 생산량이 점차 증가하는 경향을 보였으며, 안정적인 소화가 이루어진 것으로 판단된다. 또한 실험 23일차부터 바이오가스 생산량은 400~500 L/day・m³로 비슷한 양의 바이오가스 발생하였는데 이를 통해 본 실험의 혐기성소화가 23일 이후부터 안정화되어 유기물분해가 이루어진 것을 알 수 있다.
최근 국제적으로 유가상승과 1차 및 2차 에너지의 제한성으로 인한 에너지위기, 에너지사용량의 증가와 산업화에 따른 기후변화, 기후변화에 따른 환경문제가 지속적으로 이어져오고 있다. 이러한 문제들에 대응하기 위한 수단으로 신재생에너지의 활용 및 연구가 활발하게 진행되고 있으며 우리나라에서도 폐기물을 이용한 바이오가스 생성 및 활용에 많은 연구 및 생산이 이뤄지고 있다. 유기성 폐기물을 이용하여 바이오가스를 생성하는 시설이 증가하고 있어 폐기물질을 처리하는 동시에 새로운 에너지를 생성하고 있다. 우리나라에서 이뤄지고 혐기소화를 통한 바이오가스 생성시설은 대부분 중온소화를 통해 이뤄지고 있으며 중온소화 적정온도인 35℃를 유지하기 위하여 추가적인 에너지 활용이 불가피하다. 따라서 유기성폐기물을 이용하여 효율적인 바이오가스를 생성하기 위하여 연구를 진행하였으며 혐기성소화를 통한 바이오가스 생성 시 중온소화 온도를 유지할 수 있는 새로운 방법을 찾고자 하였다. 호기성산화열에 적용되는 유기물질은 톱밥50%, 두부비지40%, 미강%의 비율로 배합하였으며 미생물의 지속적인 소화 및 온도유지를 위하여 각 소화조마다 1kg의 유기물질을 1일 1회 공급하였다. 또한 호기성소화의 적정 수분함량인 50~60%를 유지하였으며 반응조 내 유기물질의 고른 혼합을 위하여 1일 1회씩 교반하였다. 본 실험은 온도센서가 부착된 60L 반응조 6대를 이용하여 실험을 진행하였으며 공기 유량에 따른 호기성 분해 산화열의 변화를 파악하고자 각 반응조마다 공기주입량을 다르게 설정하였다. 초기반응 시 소화조는 각 소화조는 각각 2L/min 의 유량으로 공기가 주입되며 소화조의 온도가 50℃이상이 되었을 때부터 공기유량이 다르게 주입되도록 설정하였다. 호기성소화 반응조에 투입되는 공기량에 따른 발열반응 실험결과 6번 반응조에서 나타나는 온도 변화가 이상적으로 제어됨을 확인하였다. 다른 반응조보다 반응조 내 온도 변화율이 가장 적었으며 평균 온도 값이 49.94℃로 제어 목표 온도인 50℃에 가장 근접한 값을 나타내었다. 공기량의 투입량이 많을수록 외부 공기의 투입으로 인한 온도저하를 예상하였으나 결과는 예상과는 다르게 공기투입량이 가장 많은 6번 반응조에서 호기 성분해 산화열의 발생이 가장 효율적인 모습을 나타내었다.