용존 6가 우라늄은 다양한 화학종으로 존재하며, 화학종의 분포는 수용액의 pH에 의존한다. 산성 및 중성 근처의 pH 환경 에서는 대표적으로 UO2 2+, UO2OH+, (UO2)2(OH)2 2+, (UO2)3(OH)5 + 화학종이 공존한다. 수용액 속에 비결정성 실리카가 콜로이드 성질의 부유입자 상태로 존재할 때 용존 화학종은 실리카 표면에 쉽게 흡착된다. 이 연구에서는 표면 흡착 화학종의 분 포가 용존 화학종의 분포를 따르는지 조사하였다. 시료의 pH 값이 3.5-7.5인 조건에서 3종의 용존 화학종(UO2 2+, UO2OH+, (UO2)3(OH)5 +)과 2종의 표면 흡착 화학종(≡SiO2UO2, ≡SiO2(UO2)OH‐ 또는 ≡SiO2(UO2)3(OH)5 ‐)의 시간 분해 발광(luminescence) 스펙트럼을 측정하였다. pH 변화에 따른 각 화학종의 스펙트럼 변화 양상을 비교한 결과로 표면 흡착 U(VI) 화학종의 분포는 용존 U(VI) 화학종의 분포와 다르다는 것을 확인하였다.
폐기물 용액의 pH 변화에 따른 고정층에서 우라늄 및 코발트 이온의 흡착거동을 다성분 흡착시스템으로 가정하여 이론적으로 예측하였다. 즉 pH 변화에 따라 존재 분율이 달라지는 각 이온 성분들이 상호 경쟁적으로 흡착한다는 가정 하에서, 평형실험에서 얻어진 결과와 우라늄 및 코발트 이온의 용액특성 (Solution chemistry)을 상호 결합하여 각 이온 성분들의 Langmuir 평형상수 값을 Ideal Adsorbed Solution Theory를 도입하여 구하였으며, 이상의 결과를 이용하여 고정층 파과곡선을 이론적으로 계산한 결과 pH 변화에 따른 흡착거동을 비교적 잘 예측할 수 있었다 따라서 본 연구에서 시도한 방법은 이온 농도와 pH가 높은 경우를 제외하고 pH 변화에 따라 용액 내에 이온의 형태가 다양하게 존재하는 흡착 시스템을 이론적으로 예측하는 데 비교적 유용하게 사용할 수 있을 것으로 판단된다.
아미드옥심기와 복합재료 섬유흡착제를 제조하였고 해수로부터 우라늄이온의 분리 특성을 조사하였다. 흡착량은 흡착시간이 증가함에 따라 증가하였고 An:TEGMA:DVB의 몰비가 1:0.1:0.003인 수지가 pH 8 부근에서 최대 흡착능을 나타내었다. 또한 흡착량은 CFA에 첨가한 흡착제의 양이 증가함에 따라 증가하였으며 1시간 까지 선형적으로 증가하였고, 25˚C에서 최대흡착량을 나타내었다. 한편 Ca, Mg 이온은 흡-탈착 cycle이 반복될수록 증가하였으며 그양은 각각 0.3, 0.9mmole/g-Ads로 우라늄 이온의 그것보다 매우 낮았다. 흡착된 우라늄 이온의 탈착은 흡착제의 종류에 관계없이 약 30분 이내에 거의 100% 탈착되었다.
해수로 부터 우라늄 분리를 위한 아미드옥심형 섬유복합재료 흡착제를 제조하였고, IR, 팽윤도 실험, CHN 원소분석, SEM 및 흡착능 실험을 통하여 그 특성을 알아보았다. AN-TEGMA 및 AN-TEGMA-DVB 공중합체의 팽윤율과 수율은 가교제의 함량이 증가할 수록 감소하였으며, 수율은 AN-TEGMA 공중합체의 경우 85-92%였고 AN-TEGMA-DVB 공중합체는 82-88%였다. 다공도도가교체의 함량이 증가할 수록 감소하였으며 AN-TEGMA-DVB 공중합체가 AN-TEGMA 공중합체보다 작았다. 또한 전자현미경 관찰 결과 제조한 섬유 복합재료 흡착제의 표면에 흡착제가 고루 분포되어 있는 것을 확인하였고, 흡착제의 최적 첨가량은 40wt%이었다. 섬유복합재료 흡착제의 우라늄 흡착량은 pH 8 부근에서 최대 였으며, 해수의 pH가 8.3임을 감안할 때 해수 우라늄 분리에 적합한 소재 임을 알 수 있었다.