The present research focuses on the tribological behavior of the AA5083 alloy-based hybrid surface composite using aluminosilicate and multi-walled-carbon nanotube through friction stir processing for automotive applications. The friction stir processing parameters (tool rotation and traverse speed) are varied based on full factorial design to understand their influence on the tribological characteristics of the developed hybrid composite. The surface morphology and composition of the worn hybrid composite are examined using a field-emission scanning electron microscope and an energy-dispersive x-ray spectroscope. No synergistic interaction is observed between the wear rate and friction coefficient of the hybrid composite plate. Also, adhesive wear is the major wear mechanism in both base material and hybrid composite. The influence of friction stir process parameters on wear rate and the friction coefficient is analyzed using the hybrid polynomial and multi-quadratic radial basis function. The models are utilized to optimize the friction stir processing parameters for reducing the rate of wear and friction coefficient using multi-quadratic RBF algorithm optimization.
Aluminum material, which has excellent corrosion resistance, durability, and light weight, is widely used in the field of shipbuilding, and welding is an essential technology in shipbuilding. currently, welding is efficiently used to assemble structures of various sizes in the shipbuilding process, but aluminum is a very sensitive material at high temperatures and in a molten state, so appropriate process control is essential. research on aluminum welding has been continuously conducted, but most of the research is on the butt welding method. therefore, in this study fillet welding experiments, which are essentially applied to the internal structure of aluminum ships, were performed and the correlation between welding beads and process variables was identified. for the welding experiment GMA fillet welding was performed on Al5083 material used in the shipbuilding industry, and the influence of the process variable was confirmed by analyzing the correlation through the analysis of the etched fillet weld bead cross section for the test result according to the process variable.
The cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding is affected by the surface roughness, cutting pressure, cutting speed, and the distance between nozzle and material. The cross-section of water jet cutting is formed a V-shape as the cutting speed increase. The upper width(kerf width) is wide and the lower surface is narrow. The width of cutting cross-sections are effected in the order of cutting speed, cutting pressure, and distance between nozzle and material. From the experimental results, to improve of cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding, the optimal cutting conditions to improve the surface roughness and kef width are proposed and discussed.
LNG makes cryogenic conditions, so metals without low-temperature brittleness must be used. The International Maritime Organization (IMO) defines 9% Nickel steel, STS304L, 36% Nickel steel and Al5083 as metals that can be used in cryogenic conditions through the IGC Code. In this study, Al5083-O was studied to minimize welding distortion, and verified through finite element analysis and experiments. The block dumping method, which is advantageous in terms of analysis time and cost, was used, not the continuous heat source method. The constraint models with the thickness direction and the tensile force model were compared with the reference model, it was confirmed that the tensile force model had no significant effect. After verifying through the experiment, it was confirmed that the trend of the finite element analysis model was consistent with the experiment. Through this study, a welding distortion minimization model could be found with the block dumping method. It is judged that simulation of many models through short time analysis will be of great help in the field.
Natural gas is the most realistic fuel among eco-friendly fuels. Natural gas production is limited, and in Korea, it is supplied and utilized in the form of liquefied natural gas (LNG). In the case of LNG, the vaporization point is 163 degrees below zero, so ordinary metal cannot be used due to its brittleness. The International Maritime Organization (IMO) defines metals that can be used in the IGC Code, and is used for storage containers, transportation containers, etc. based on the metals. Welding is essential in the manufacture of large structures such as LNG storage tanks. In this study, weldability studies related to cryogenic materials were conducted. In Part I of this study, high-manganese steel and part II were studied for two types of stainless steel (STS304L, STS316L), and in Part III, aluminum (AL5083). During laser welding, the shape of the Bead on Plate (BOP) was analyzed, and a total of nine cases were analyzed using laser power and welding speed as variables. It was confirmed that the penetration and the width of the welding width were linearly proportional to the amount of heat input. Based on this study, it is possible to conduct a follow-up study to find the optimal welding conditions for butt welding and fillet welding.
In this study, the curvature FSW experiments were performed with the 2 mm thickness of Al 5083-O using by the 5 axis(X/Y/Z/A/C) position control system. For the mechanical test of the butt joints, the tungsten heavy alloy as the tool material without necessary after finishing the heat treatment such as quenching was used. In particular, the insertion depth and the welding speed was changed at the constant rotation speed in order to select the optimum FSW condition. The test results were visually satisfactory for the approximate joint length of 300 mm. Sound joint was formed at the condition of 1.9 mm-1000 rpm-100 mm/min and its tensile strength of joint was the most high almost the same as that of the base material.