검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetic abrasive finishing (MAF) process is a surface improvement method, which the magnetic field of permanent magnet or electromagnet is used to control the abrasive particles during the finishing process. The magnetic abrasive tools are filled between the N-pole and S-pole of Nd-Fe-B type permanent magnets. Tungsten carbide bar (WC) is a high hardness material and its compressive strength is much higher than the other materials. Therefore, due to its superior mechanical properties, it has been widely used in cutting or machining process. Because the smooth surface of tungsten carbide is required in cutting tools, thus the magnetic abrasive finishing process was applied for achieving its surface accuracy and dimensional accuracy. The results showed that the surface roughness of tungsten carbide bar was improved from Ra: 0.23㎛ to Ra: 0.02㎛ in 120 sec by magnetic abrasive finishing process.
        4,000원
        2.
        2006.04 구독 인증기관·개인회원 무료
        A porous material with a surface layer was fabricated using glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into pellets. These pellets were sintered in the range of for 20min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and pores controlled the absorption ratio and physical properties.
        3.
        2015.05 서비스 종료(열람 제한)
        In Korean steel making industry is generating 25 billion tons of slag as industrial by-products per year. Uses of these slags to manufacture high functional abrasive material are of greater feasible option for sustainable development of industry as well as effectively solve the pollution issue associated with these waste. Recycling methods of slag have been actively studied for decades, but most of the slag recycling methods studied are related to low cost building materials. Recently, several combinations of by-products have been used in glass-ceramic manufacturing, mostly the abrasive materials are basalt based glass-ceramic. Using these industrial by-products instead of natural basalt ores, high functional product can be manufactured. This piece of investigation focused on the feasibility study for producing the basalt based glass-ceramic from recycled industrial by-products only, without any natural materials as raw materials. By controlling various process parameters like, mixture ratios of materials, heat treatment for casting, and soaking basalt based glass-ceramic were prepared. The prepared materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), thermo-gravimetry and differential thermal analysis (TG-DTA). Excellent material properties were observed.