이 연구에서는 TEC-BNR공법을 사용하는 하수처리장에서 강수발생시와 같은 저농도 유입수에, 하수처리장의 생슬러지, 분뇨처리수, 그리고 음식물 쓰레기 처리액을 산발효하여 생성된 유기산을 외부탄소원으로 투입하였을 때, 비탈질율과 인방출율의 변화를 정량적으로 측정하였다. 이 연구에 의하면 산발효액 투입하였을 때 평균 비탈질율은 산발효액의 투입율이 0.5%일 때 215%, 투입율이 1%일 때는 169% 증가하였고, 평균 인방출양은 산발효액의 투입율이 0.5%일 때 46%, 투입율이 1%일 때는 63%로 증가하는 것으로 밝혀졌다. 또한 이 연구의 결과를 통하여 탈질에 이용된 VFA양(12.6∼32.3 mgVFA/mgNO₃-N)과 인방출에 이용된 VFA양(1.7∼2.4 mgVFA/mgPO₄-P)도 계산할 수 있었다. 이 연구의 결과를 활용하면 하수처리장에서 저농도 유입수에 산발효액을 외부탄소원으로 사용할 경우, 탈질과 인 제거를 최적화하기 위한 산발효액(VFA)의 양을 정량화할 수 있을 것으로 생각된다.
Nannochloropsis oceanica has been recognized as a valuable source of eicosapentaenoic acid (EPA) for nutraceutical applications. In this study, the effects of temperature on the growth and fatty acid production of N. oceanica were investigated to determine the optimal conditions for maximizing both growth and EPA production. The growth responses of N. oceanica exhibited a wide temperature range of 5-30°C, with the maximum cell density at 25°C (35.9×105 cells mL-1). Biomass production, as measured by dry weight in N. oceanica culture, was the highest at 20°C (86.2 mg L-1). In N. oceanica cultures exposed to relatively low temperatures (5-10°C), cells did not grow significantly; however, the proportion of polyunsaturated fatty acids including EPA (22.3, 26.0% of total fatty acid), was significantly high. These results indicate that the optimal temperature conditions for promoting growth and EPA accumulation of N. oceanica are different. Based on these results, a temperature-dependent two-stage cultivation strategy was proposed to optimize both biomass and EPA production in N. oceanica cultures, which included an initial phase at 20°C to achieve high biomass, followed by a second phase at 5-10°C to maximize EPA accumulation.
Ischemic stroke is a leading cause of death and neurological disability though mechanisms involving oxidative stress and the activation of apoptosis-related pathways. Retinoic acid, an active metabolite of vitamin A, is known for its neuroprotective effects via antioxidant and anti-apoptotic mechanisms. 14-3-3 γ is abundantly expressed in the brain and plays a critical role in maintaining neuronal function and survival. However, the effect of retinoic acid on the expression of 14-3-3 γ protein has not been fully elucidated. The aim of this study was to determine whether retinoic acid regulates the expression of 14-3-3 γ protein in the cerebral cortex of a stroke animal model. Male rats were randomly divided into four groups: phosphate-buffered saline (PBS) + sham, retinoic acid + sham, PBS + middle cerebral artery occlusion (MCAO), and retinoic acid + MCAO. Focal cerebral ischemia was induced using the MCAO method. Retinoic acid (5 mg/kg) or PBS was administered intraperitoneally immediately after MCAO. Neurological deficit scores and corner tests were conducted 24 h after MCAO surgery, and the cerebral cortex was harvested for analysis of 14-3-3 γ expression at the mRNA and protein levels. Neurological assessments showed that retinoic acid treatment significantly alleviated MCAO-induced behavioral impairments. Proteomic analysis revealed that MCAO markedly reduced the expression of 14-3-3 γ protein in the cerebral cortex, whereas retinoic acid administration effectively attenuated this reduction. These findings were further supported by reverse transcription-PCR and Western blot analyses, which showed consistent results at both the mRNA and protein levels. Retinoic acid attenuates the ischemia-induced downregulation of 14-3-3 γ expression in the cerebral cortex. Our findings can suggest that retinoic acid exerts neuroprotective effects in ischemic brain injury through the regulation of 14-3-3 γ protein expression.
Tannic acid (TA) is one of the active components in the Galla Chinensis and has various effects, including antioxidant and anti-inflammatory properties. However, research on its antiviral properties remains limited. Here, tannic acid carbon dots (TA-CDs) were prepared as potential antiviral drugs from polyphenol TA under different temperature conditions (180, 200, 220 and 240 °C). Compared to TA alone, TA-CDs exhibited lower cytotoxicity and a tenfold enhanced in antiviral activity. Additionally, the antiviral effects of TA-CDs varied with preparation temperatures, with the best effect observed at 200 °C (CDs-2), reaching a titer of 2.8 orders of magnitude in porcine reproductive and respiratory syndrome virus (PRRSV), mainly due to its relatively higher number of functional groups and smaller particle size. Mechanically, CDs-2 was shown to inhibit PRRSV by targeting the stages of inactivation, adsorption, invasion, replication, and down-regulating reactive oxygen species (ROS) levels. Moreover, CDs-2 exhibited a high inhibitory effect on porcine epidemic diarrhea virus (PEDV), reaching a titer of 7 orders of magnitude. This study reveals the importance of temperature in synthesis of traditional Chinese medicine-derived carbon dots (TCM-CDs) and confirms their potential as antiviral drugs, providing valuable information for development of TCM antiviral drugs.
Waste utilization is not only a way to protect the environment and realize green chemistry, but also a means to create novel materials. In this study, based on waste grape seeds as the biowaste-derived carbon dots (G-BCDs), a straightforward one-pot green method was employed for the rapid detection of folic acid (FA). Owing to the internal filter effect and the static mixing quenching mechanism, the sensing principle of G-BCDs was effectively quenched by FA. The results showed fluorescence at an emission wavelength of 415 nm upon excitation at 330 nm with a quantum yield of 1.5%. Particularly, the FA sensing assay obtained a broad linear range of 2–220 μM and the limit of detection was 0.48 μM. In addition, the fluorescence probe was successfully utilized for detecting FA in tablets, blood, and urine samples, yielding desirable results, which indicated promising applications in the fields of biological and pharmaceutical analysis.
본 연구는 절화 장미‘All For Love’에 대해 과산화초산 (peracetic acid, PAA)의 보존용액 적용 가능성과 적정 처리 농도를 구명하고자 수행되었다. 보존용액 처리는 Distilled water(DW), PAA 50, 100, 200μL·L-1, FloraLife 1%로 하였 다. 절화수명은 대조구 DW(5.27일)에 비해 PAA(5.87~6.20 일)와 FloraLife(5.87일) 처리구에서 절화수명 연장효과가 있었 다. 모든 처리구에서 80% 이상 꽃목 굽음(Bent neck)과 20% 이상 꽃잎 청변화(Blueing) 현상이 나타났다. 화색 변화율과 잎의 엽록소 함량은 처리간 차이가 없었다. 화폭변화율의 경 우, DW(135%)보다 PAA 50μL·L-1(155%), 100μL·L-1(154%), 200μL·L-1(161%) 처리구에서 높은 개화율을 보였다. 상대생체 중은 DW와 FloraLife 처리구에서는 2일, PAA 처리구에서는 3일까지 증가 후 감소하였다. 수분균형은 DW에서 가장 빠르게 (-)의 값을 나타냈고, PAA 50μL·L-1 처리구에서 가장 길게 수분 균형이 유지되었다. PAA와 FloraLife 처리구에서 보존용액과 줄기 절단면 모두 세균이 검출되지 않았다. 결론적으로 PAA 50μL·L-1 처리는 DW에 비해 장미의 절화수명 연장 및 품질 유지에 효과적이었다.
The aim of this study was to produce a fermented rice bran extract with enhanced ferulic acid γ-oryzanol contents and high antioxidant activities. The ferulic acid content in the freeze-dried extract of rice bran treated with plantase PT enzyme, increased by 4.1-fold compared to that of untreated sample, the DPPH radical scavenging activity also increased by 1.5-fold and 1.2-fold, respectively. The γ-oryzanol content of the dried powder prepared by inoculating Apergillus oryzae BOT1869 onto steamed rice bran for solid-state fermentation followed by extraction with 80% ethanol, increased 2.3-fold compared to that in an 80% ethanol extract powder of raw materials. The ABTS scavenging activity also increased 1.5-fold. When the ferulic acid content-enhanced extract and the γ-oryzanol content-enhanced extract of rice bran were mixed and subjected to liquid fermentation with Lactiplantibacillus pentosus BOT406 and then freeze-dried, the ferulic acid content of the extract powder increased about 3.0 times compared to that of original extract powder. In addition, its γ-oryzanol content increased about 1.5 times, the DPPH radical scavenging activity increased 1.4 times, and the ABTS radical scavenging activity increased 1.6 times.