Al2O3 has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, Al2O3-CuO/ZnO (ACZ) and Al2O3-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 m2/g to 142 m2/g, and the ACC powders from 103 m2/g to 140 m2/g, respectively.
Al2O3 sol with long-term stability was prepared by mechanical milling. Thin films were evaluated and created for use as coating materials. The particle size of the manufactured sol was 98 nm when 2 wt% of nitric acid was added. This indicates that the viscosity of the sol is 12 cps and that it has long-term stability. The thickness of the thin films, which varied from 100 nm to 500 nm, could be managed by adjusting the draw rate and the amount of an organic additive. A thin film heated to 500˚C indicated a hydrophilic property against water and excellent permeability against a visible ray.
Field emission display(FED) is actively investigated in view of the development of full color flat-panel display, which can replace some cathode-ray tube(CRT). Thus, the development of new phosphors appropriate for FED is urgently needed and has been actively investigated. In this work, SrTiO3:Pr3+ phosphor was prepared by sol-gel method and the coating was applied by sol-gel method combined with sonication on these phosphor's surface into diluted precursor solution. It was found that very fine particles of coating material were formed on phosphor's surface. The luminescent intensity of SrTiO3:Pr3+ phosphor coated with SiO2 and Al2O3 was considerably increased without any noticeable change in color chromaticity. The optimum concentration of coating material was found to be 1wt% and the optimum pH value of the solution was 10.
Li2O-Al2O3-SiO3계 결정화유리의 저온합성을 위하여 출방원료로서 각 해당 금속 알콕시드를 사용하였다. 알코올을 용매로 충분히 첨가하고, drying control chemical additive로 dimethy1 formamide를 적당량 첨가한 혼합용용액을 과잉의 물로 충분히 가수분해시킨 습윤겔을 저온으로 건고하여 균열이 없는 건조된 monolith겔을 합성하였다. 건조겔로부터 750-950˚C로 10시간 이상 소결하여 저열팽창성을 나타내는 β-eucrypytite(β-quartz 고용체), Li2O· Al2O3· 3SiO2및 β-spodumene등의결정상을 석출시켰다.