PURPOSES : There has been increasing interest in South Korea on warm-mix asphalt (WMA) and cold-mix asphalt (CMA) technologies that allow production of asphalt pavement mixtures at comparatively lower temperatures than those of hot-mix asphalt (HMA) for use in pavement engineering. This study aims to evaluate the feasibility of replacing HMA pavement with WMA pavement with the goal of reducing CO2 emissions associated with asphalt production for road construction. METHODS : Changes in the dynamic modulus characteristics of WMA and HMA according to short-term and long-term aging were evaluated. In addition, the effects of water damage were evaluated for short- and long-term aging stages. RESULTS : For WMA, in the process of mixing and short-term aging, early-age dynamic modulus decreased owing to low temperature and reduced short-term aging (STA) time. This could result in early damage to the asphalt pavement depending on the applied traffic load and environmental load. CONCLUSIONS : Mastercurves of the dynamic modulus were used for comparative analysis of WMA and HMA. Compared to the dynamic modulus after STA of HMA, the estimated aging time determined by experiments for WMA to achieve the required stiffness was more than 48 hours, which is equiva-lent to approximately 4 to 5 years real service life when converted. It is considered that further studies are needed for performance optimization to achieve early-age performance of the asphalt mixes.
PURPOSES : This study aims to determine whether machine learning techniques based on the results of chemical analysis experiments can be rationally applied to evaluate the aging of various asphalt binders used throughout the country. METHODS : We conducted chemical experiments such as FT-IR, H-NMR, C- NMR, and GPC for the three-stage aging levels of eight types of asphalt binders used in the country and utilized two artificial neural network models to determine valid chemical experimentation and conditions for the use of neural modeling through predictions. RESULTS : The M-prop model, which combined the findings from each neural network model into a single artificial neural network model, demonstrated superior predictive performance compared with the M-base model, which assessed aging using two cluster layers. In addition, the minimum amount of data required to achieve 100% predictive accuracy for the target asphalt binders, regardless of the artificial neural network model, was 18, and the amount of training data decreased to less than 50%. CONCLUSIONS : The predictive accuracy of the aging of asphalt binders was significantly enhanced when GPC data was used, indicating that GPC should be prioritized in evaluating the aging of asphalt binders.
PURPOSES : The objective of this study is to analyze the significance of binder aging in a hot-mix asphalt (HMA) mixture in an insulated camber for a long duration for repair works, where the absolute viscosity level and service life reduction (SLR) are assessed based on the haul time, as well as to suggest a methodology for reducing the aging level.
METHODS : Because the HMA mixture is stored in an insulated box carriage at high temperature for repair works, if the binder in the mix is severely oxidized, then the repaired pavement will not exhibit a long service life. Therefore, the 13-mm dense-graded HMA mix with PG64-22 was aged in an oven at 160 °C for 1, 2, 4 and 8 h to evaluate its aging level. Gel-permeation chromatography was performed on the mixture particle without binder recovery to measure the large-molecular size ratio, from which the estimated absolute viscosity (EAV) was computed using a best-fit regression model. The SLR values of aged and repaired mixes were estimated to determine the amount of deterioration in the mixes caused by severe aging. Hydrated lime (HL) was introduced into the mix at a ratio of 1.5 wt% of the total mix. The aging level and SLR were compared with those of the repaired mix without HL.
RESULTS : The binder EAV of the HMA mix increases significantly with the mixture aging duration. In particular, the binder EAV level of a 4-h aged mix is similar to the asphalt viscosity level of a pavement with approximately 7 years of service life. The service life expressed based on the aging level is interpreted as the reduced service life of the aged mix, which is already oxidized before it is used. Meanwhile, the binder of an 8-h aged mix without HL aged significantly and its SLR is approximately 11 years. However, its aging level and SLR reduced significantly when HL. is incorporated.
CONCLUSIONS : The binder aging level of the repaired mix increases significantly with its storage duration in a hot chamber for carriage. However, since the aging level decreases significantly by the incorporation of HL, the use of HL is highly recommended when preparing new mix for repair works to be performed in a hot-chamber for a long duration.
PURPOSES : This study was performed to evaluate the short-term aging (SA) protocols of the normal hot-mix asphalt (HMA) mixture, to explore problems, and to suggest proper procedures based on fundamental principles of SA in terms of the SA temperature (T) and length of time (Lt) in existing specifications in several countries including Korea.
METHODS : As the SA in our lab is a simulation of field SA, which is an inevitable procedure occurring naturally in the current field practice, major SA guidelines of foreign countries and Korea were reviewed to investigate problems that showed discrepancies with field practice. The aging quantity (Aq) model was introduced as a function of T and Lt, based on the correlation with absolute viscosity (AV) to estimate Aq by T and Lt. The normal SA (NSA) was suggested through an example procedure inducing binder aging level similar to the RTFOtreated binder AV or Aq. Based on the NSA Aq level, lower, proper, or higher SA conditions were discovered from the existing SA guidelines.
RESULTS : As Aq has excellent correlation with AV, the proper T and Lt for NSA as an example was suggested based on the AV of RTFOtreated binder to induce an Aq range of 19,000-25,000 min.℃. It was found that there were several problems in the existing guidelines in USA and Korea. These included lower T, shorter or longer Lt, and air blowing or stirring the mix during SA, which were not matched with the practical condition of loaded HMA mixtures that were short-term aged under hot temperatures in trucks.
CONCLUSIONS : It was concluded that there are several problems in the current SA guidelines, which do not provide proper HMA temperature to mixtures for proper (modal) length of time. Therefore, these guidelines should be reevaluated carefully and revised based on the fundamental field SA principle. The NSA condition should be suggested using proper HMA T and modal Lt for better simulation of field SA practice.
PURPOSES : The use of hydrated lime or other liquid anti-stripping agents (ASA) is the most common method of improving the moisture susceptibility of asphalt mixes. ASAs are also known to have an anti-aging effect, according to several researchers. Therefore, the use of ASAs is expected to enhance the stability of asphalt pavements. The purpose of this study is to investigate the anti-aging effect of ASAs that are found in the domestic market.
METHODS : In this study, an asphalt binder and a mixture mixed with typical domestic solid and liquid ASAs were prepared and aged to evaluate the physicochemical changes. A liquid additive developed by a Korean oil refinery was used as the liquid ASA, and hydrated lime was utilized as the solid ASA. The aging process of the asphalt was determined in the laboratroy based on previous studies to simulate the aging process inh te field.
RESULTS : The result of the laboratory experiment indicates that both the solid and liquid ASAs have an anti-aging effect. Moreover, the liquid additive performed relatively better than the hydrated lime.
CONCLUSIONS : If ASAs have an anti-aging effect in addition to the anti-stripping function, it is expected to improve the stability of the asphalt pavement significantly. However, few studies have been carried out on the anti-aging effect of ASAs found in the domestic market. In this study, we conducted a fundamental study on the anti-aging effect to help in the selection and use of ASAs in the domestic asphalt-paving industry.
PURPOSES : Asphalt pavements are damaged by various causes, such as cracks, potholes due to climate, and traffic environment. Asphalt aging has a significant effect on cracks, which may also form potholes. The purposes of this study are to estimate the change in asphalt binder and mixture performance and to correlate the physicochemical changes of the asphalt binder and mixture performance with aging.
METHODS : The aging process of the asphalt was determined in the laboratory, based on the methods used in previous studies. In terms of consistency (stiffness), crack-resistance performance, moisture susceptibility, SK investigated the binder part, and Shoreki investigated the mixture part depending on the aging time.
RESULTS : The consistency (stiffness) and brittleness of both the asphalt binder and mixture tended to increase with aging. In particular, the crack-resistance performance of the asphalt binder (G*sinδ, ductility, and ΔTc) and mixture (flexural fatigue test and Cantabro test) deteriorated because of asphalt aging. Furthermore, the aging mechanisms (oxidation and polymerization) were identified based on the chemical structure analysis.
CONCLUSIONS : It is confirmed that the aging affected the chemical composition change and the physical properties of the asphalt. Asphalt pavements are significantly affected by the aging characteristics of the binder. It is concluded that the crack-resistance performance of the mixture decreases with aging due to these physical and chemical changes.
PURPOSES: The objective of this study was to investigate the effect of short-term aging level on the moisture resistance of a dense-graded asphalt mixture by measuring its deformation strength ratio (SDR).
METHODS : Three short-term aging (STA) durations (1, 2, and 4 h) at two different temperatures (160℃ and 180℃) were used for the normal dense-graded hot-mix asphalt (HMA) mixtures prepared using PG 64-22 asphalt and 13mm aggregate with and without hydrated lime (HL). The specimens were prepared using a gyratory compactor, after each STA, to achieve a WC-1 gradation as defined by the Korean guide. The SDR was measured after freezing-and-thawing (F-T) conditioning, and submerging the specimen into water at 60℃ for 72 h.
RESULTS: The results indicated that the moisture resistance decreased with the increase in STA duration. After STA at 160℃ and 180℃, the SDR values, measured after F-T treatment, or after submerging into 60℃ water for 72 h, decreased with the increase in STA duration. However, when HL was used in the same asphalt mixtures, the SDR improved, for identical STA conditions. Therefore, the moisture resistance of the asphalt mixture was affected by the short-term aging duration, and decreased with the increase in aging duration. However, HL effectively retarded aging, and the moisture resistance, as indicated by the SDR, improved in the HL-added mixes, which had aged lesser than the normal mixes.
CONCLUSIONS : It was concluded that the moisture resistance of the asphalt mixture decreased with the increase in aging level, and hydrated lime was effective in preventing the degradation of the moisture resistance by reducing the age-hardening of the binder. However, since this study used a limited range of materials, further studies using more materials are required to reach a more generalized conclusion.
When there is a significant stripping in asphalt pavement, it is common practice to use a hydrated lime (HL) as an anti-stripping additive (ASA). However, since many asphalt plants do not have facilities for weighing and casting HL, they prefer to use of a liquid-type ASA (LA). Therefore, various brands of LAs which show proper anti-stripping function are currently developed, imported, and marketed in Korea. In addition to the anti-stripping effect, the HL has been known to give a significant age-retarding effect on paved asphalt in the field. Therefore, there was a question about whether or not the LA provides the same anti-aging effect as The HL. This study investigated anti-aging effect of the asphalt mixes which were prepared using both ASAs and short-term aged and long-term aged in the laboratory. The absolute viscosity was measured as an aging index from the binder recovered from the mixes after short-term aging (STA) and long-term aging (LTA) processes. The results showed that there was a significant higher aging found from the LA-added mix than the normal mix without any ASA. On the other hands, the mix with HL showed significantly lower ageing level than the LA-added mix and normal mix. The retardation of age-hardening by using HL was more effectively observed when the STA condition was stronger.
It is well known fact that the filed asphalt mixture is aged in the truck while hauling and queuing for one to four hours before dumping to the hopper of the paver. This aging, which is called short-term aging (STA), affect the physical and mechanical properties of asphalt mixture. For example, the maximum theoretical density of mixture is changed before and after STA. Therefore, when the asphalt mixture specimen is prepared for testing various physical and mechanical properties in laboratory, the mixture should be STA conditioned by a most-likely STA condition of the field. This is the reason why the STA should be performed properly. This study initiated to investigate STA conditioning protocols, set forth many agencies in the world, and to suggest a proper STA protocol which simulates field HMA condition as most likely as possible. According to this study, it was suggested that the blended loose mix for one specimen poured in a canister should be kept in a drying oven (no forced draft) without cap at 163±2℃ and for 70±15 min for normal HMA mix. This protocol was suggested based on that the absolute viscosity level of the recovered binder after STA should be a similar level of the same binder after a standard RTFO run.
Generally, asphalt binder experiences short-term aging during mixing and constructing processes in high temperature environments and long-term aging during the service life after opening the road. Binder aging inside asphalt mixtures incurs changes in strength of asphalt paved roads, which then changes physical properties of the mixture such as cracks and rutting resistance. This study aims to measure bond strength of aging asphalt binder using asphalt bond strength (ABS) test that can measure a bonding force of asphalt binder and aggregate surface using Pneumatic Adhesion Tensile Testing Instrument (PATTI) used previously in the paint industry as a testing method specified in AASHTO TP-91.
아스팔트 혼합물이 운반·대기 중에 단기노화(short-term aging: STA)되는 것은 잘 알려진 사실이며 노화정도는
혼합물의 온도가 높음에 따라 그리고 시간이 길어짐에 따라 지수 함수적으로 증가되는 것으로 알려져 있다. 또한 같은
온도와 시간에 같은 바인더, 골재 및 입도를 사용한 같은 혼합물이라도 사용되는 첨가제의 종류에 따라 노화도에 차이가
난다. 그리고 혼합물의 종류에 따라서도 노화도에 차이가 큰 것으로 알려져 있다. 따라서 본 연구에서는
박리방지제(anti-stripping agent: ASA)의 종류와 혼합물의 종류에 따른 노화도의 차이를 비교분석 하였다. ASA로는
박리방지효과가 우수한 분말의 소석회와 액상 ASA를 비교하였다. 혼합물은 밀입도 아스팔트 (dense-graded asphalt:
DGA) 표층용 혼합물과 쇄석 매스틱 아스팔트 (stone mastic asphalt: SMA) 혼합물을 비교하였다. 노화도는 아스팔트
노화의 척도로는 가장 많이 쓰이는 절대점도(absolute viscosity: AV)를 이용하였다. STA 온도와 시간에 따른 AV의
차이를 STA 처리된 혼합물로부터 추출·회수하여 60℃에서 측정하였다. 시험결과 같은 온도와 시간으로 STA 처리된
혼합물에서 소석회가 사용된 혼합물의 노화도가 월등히 낮았으며, 혼합물의 종류로는 SMA 혼합물의 노화도가 DGA
혼합물보다 낮게 나타났다. 이는 소석회가 박리방지효과 뿐만 아니라 노화억제 효과가 크기 때문이며, SMA는 바인더
함량이 높아 골재를 피복한 아스팔트 필름의 두께가 두꺼워 노화도가 적게 나타난 것으로 판단되었다.
PURPOSES: This study aims to show the difference of the binder aging level in the hot-mix asphalt (HMA) mixture after short-term aging (SA) under different aging conditions, such as mixture temperature and duration in hour. METHODS: Three SA times (i.e., 1 h, 2 h, and 4 h) at two temperatures (i.e., 160℃ and 180℃) were used for the normal mixtures prepared using a PG64-22 asphalt. The field long-term aging (LA) was simulated by applying the same LA procedure (65 h at 110℃) to all compacted specimens, prepared at the air void of 7% using each SA-treated mixture, in a convection oven. The binder aging level was measured in terms of large molecular size by gel-permeation chromatography (GPC) from the mixture and the absolute viscosity (AV) from the recovered binder. The aging levels were evaluated using those two properties after SA and LA, and then compared based on the normal SA (NSA) mixture (1 h at 160℃). The service life reduction caused by SA in various conditions was estimated based on the aging level of the field cores from different locations in various service lives. RESULTS: The results of the laboratory evaluation indicated that the binder of the mixture, which was treated at longer SA time and higher temperature, showed a significantly higher aging level than the NSA mixture. The binder aging level from a longer time, such as 2 h and 4 h SA, or at a higher temperature (180℃), were estimated to be similar to that of the mixtures, which had already been in field service for several years. CONCLUSIONS : The HMA mixture should be produced at a moderate temperature, such as 160℃, and placed within a limited hauling and queuing time to avoid a significant short-term aging of the binder before placement in the field pavement. The SA for a longer time at a higher temperature than the NSA condition was found to be detrimental to the service life of the asphalt pavement.
Low-density polyethylene (LDPE)와 Styrene-butadiene-styrene (SBS)를 넣은 개질 아스팔트 혼합물은 바인더에 중량 비로 3~6% 첨가하여 여러 가지 특성을 획기적으로 향상시킨 아스팔트 재료이다. 아스팔트 재료의 개질목적은 일반 혼합물의 균 열저항과 소성 변형과 같은 전형적인 약점을 향상시키기 위해서이다. 이 재료들은 많은 장점들을 가지고 있으며 플랜트 적용이 간편하고 현장적용성이 우수한 특정을 가지고 있다. 여러 해 동안의 경험을 통해 습식 개질 아스팔트와 건식 아스팔트 혼합물이 현장에서 실용화할 수 있게 발전되었다. 본 연구에서는 이를 종합적으로 평가하여 그 장단점을 일반 아스팔트 혼합물과 비교 평가하여 LDPE, SBS 개질 아스팔트 혼합물의 특성을 체계적으로 밝히는 것을 본 연구의 목적으로 한다.
본 연구는 국내 현장실정에 적절한 아스팔트 혼합물의 실내노화방법을 개발하기 위한 연구이다. 강제공기순환식 오븐에서 154℃ 2시간의 단기노화를 거친 혼합물로 제작한 공시체를 110℃에서 24, 48, 72, 96시간 동안 장기노화를 시켰다. 또한 노화시간의 증가에 따라 아스팔트 바인더의 노화정도를 측정하기 위하여 GPC 분석을 수행하였다. 본 연구를 통해 노화시간이 길어짐에 따라 대형분자양이 증가하는 것을 확인하였고, 이에 대한 분석으로부터 적절한 인공노화시간의 추정이 가능함을 알 수 있었다. 본 연구에서 수행된 단기노화방법은 다소 과다하나 이를 RTFO와 유사한 수준으로 처리한다면 110℃로 약 48시간 이상 노화를 시키면 PAV 처리와 유사한 수준의 혼합물 노화가능성이 있음을 확인하였다.
There are several methods determining an appropriate performance grade of virgin binder, which is re(erred as design binder, in RAP contained bituminous mixture design process. However, difficulties have been experienced in utilizing the methods in the field application in Korea, because SHRP binder test, the key tests to determine a design binder, requires well-trained personnel, high price equipment, and time consuming process. Thus, the study investigated the relationship among the binder aging level, RAP contents, and rheologica1 properties of binder. The study results provide mix designer with a simple method in selecting an appropriate grade of virgin binder.