실제 대기경계층 내에 놓인 언덕 지형 주위 유동은 단순 모델을 적용한 풍동 실험이나 수치해석 결과와 는 큰 차이가 발생한다. 승학산은 풍향각에 따른 협곡, 매우 가파른 언덕 및 급격한 언덕을 지나는 유동의 후류 특성 등에 대한 여러 가지 지형적 특징을 지니고 있다. 이와 같은 유동 특성을 분석하기 위해 50m 높이의 기상 타워를 설치하여 30m, 40m, 50m 에서의 풍속 및 풍향을 각각 10분 평균으로 측정하였다. 경계층 풍속 분포 측정 결과, 급격한 언덕을 가진 풍향각에서는 큰 구배를 가지는 풍속 분포가 측정되었다. 특정 풍향각에 대하여 난류강도 분포가 협곡과 가파른 언덕에서 큰 값을 관찰할 수 있었으며, 프로파일 법으로 계산된 표면조도 역시 지형적인 특성으로 인한 경계층 풍속 분포를 효과적으로 나타내었다. 반면 시간적으로 분류된 대기안정성이 유동에 끼치는 영향은 복잡한 지형적 특성으로 인해 열유동 현상이 크게 나타나지 않는 것을 확인할 수 있었다.
本 硏究는 大氣大循環 過程에 나타나는 諸 現象들을 回轉流體의 實驗을 통해 나타내보임으로써 空間的인 난해한 槪念들을 학생들의 눈을 통해 직접 觀察하여 구체적으로 理解토록 했다. 回轉流體의 흐름을 可視化하고 溫度差와 回轉率에 따라 나타나는 여러 가지 유체의 운동을 觀察하며 大氣에서 나타나는 현상과 力學的으로 비교한다. Thermal Rossby number가 매우 크면(저회전 또는 큰 온도차) 熱帶에서 나타나는 Hadley 循環에 해당하는 원형의 흐름이 나타나고 이 값이 차츰 감소함에 따라(회전수 증가) 中緯度의 편서풍대에 나타나는 偏西風 波動이나 zet 氣流 등의 定常波에 해당하는 Rossby 循環의 흐름을 볼 수 있다. Thermal Rossby number가 더욱 감소하면 폐색된 低氣壓이나 高氣壓 등이 나타나며 低指數 循環에 해당하는 不規則한 흐름을 볼 수 있다. 이 실험을 통해 이러한 現象들이 또한 熱을 赤道로부터 高緯度로 운반하는 重要한 역할을 하게 됨을 알고 反射鏡과 回轉鏡 裝置를 開發함으로써 유체 흐름의 種類와 現象들을 靜止系에서 뚜렷하게 觀察할 수 있게 되어 敎育器材로서의 效能이 크다고 본다.
In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case.
The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.
The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5<H/L<-0.2), neutral regime (-0.2≤H/L≤0.2) and stable regime (0.2<H/L<2), where H is the measurement height. The diurnal Monin-Obukhov length substantially varies in the night, but most of the H/L comes under the neutral regime. The roughness length scale can be derived by three different methods - logarithmic profile, standard deviation and gust factor method. The finding in the study is that the methods of the standard deviation and the gust factor, apart from the logarithmic profile, are all similar in terms of the roughness length under the different atmospheric conditions. In addition, they have sufficiently shown the effect of obstacles and surface conditions around the measurement site.
In order to reduce the uncertainties and improve the air flow field, objective analysis using observational data is chosen as a method that enhances the reality of meteorology. To improve the meteorological components, the radius influence and nudging coefficient of the objective analysis should perform a adequate value on complex area for the objective analysis technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to clarify the impacts of the radius influence and nudging coefficient of the objective analysis on meteorological environments. By analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. In order to understand the quantitative impact of each run, the Statistical analysis by estimated by MM5 revealed the differences by the synoptic conditions. The strengthening of the synoptic wind condition tends to be well estimated when using quite a wide radius influence and a small nudging coefficient. On the other hand, the weakening of the synoptic wind is opposite.
Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.
Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become more reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.
The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain for the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values. Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center.
Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is well accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime.
And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center, Temperature after development was high 0.55~0.67℃ in the 14 hours, also was tend to appear lowly 0.10~0.22℃ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.
Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out. Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three- dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data and FDDA with observational data to reflect local characteristics in numerical simulation. So the experiments were designed according to FDDA and the detail terrain height with 3sec resolution or not. Case 30s was the experiment using the terrain height data of USGS without FDDA and Case 3s was the experiment using the detail terrain height data of Ministry of Environment without FDDA and Case 3sF was experiment using the detail terrain height data of Ministry of Environment with FDDA. The results of experiments were more remarkable. In Case 3s and Case 3sF, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height. Also Case 3sF had more adequate tendency than Case 3s at dawn.
To predict diffusion and movement of air pollutants in coastal urban region a numerical simulation shoud be consider atmospheric flow field with land-sea breeze, mountain-valley wind and urban effects. In this study we used Lagrangian particle dispersion method in the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the pollutants emited from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the fine mesh grid (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and while air pollutants exhausted from Sasang moved into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.
The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using three-dimensional model by the combination of land/sea breezes and transport. It was then applied to Pusan city. As the urban area considered in this study is located in a mountainous coastal area, the atmospheric flow is strongly affected by the land/sea breezes and mountain/valley winds. The typical effects of land/sea breezes on the dispersion and the characteristics of pollutants movement in the region were analysed. The model has been proved to be an useful tool to pridict real time air pollutants transport as shown by the results of application studies in Pusan, Korea which is an urbanized coastal area with mountainous topography.
It was found that the pollutants are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. By comparing the pollutants concentrations of the simulated results with those of the observational results, it is shown that simulated results in this study are in qualitative agreement with observational ones.