Ischemic stroke leads to severe brain damage and high mortality. Chlorogenic acid is a phenolic compound known to have neuroprotective properties. Bcl-2 family protein plays an important role in the regulation of apoptosis. We investigated whether chlorogenic acid exerts neuroprotective effects against ischemic injury by modulating Bcl-2 and Bax proteins. Middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemia and rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) for 2 h after MCAO. Cortical tissues were collected 24 h after MCAO injury and reverse transcription-quantitative real time polymerase chain reaction and Western blot analyses were performed to investigate the expression of Bcl-2 and Bax. The regulation of Bcl-2 and Bax proteins by chlorogenic acid during glutamateinduced cell damage were examined. Cells were collected at 24 h after administration of glutamate (5 mM) and chlorogenic acid (10, 30, 50 μM). These results showed a decrease in Bcl-2 expression and an increase in Bax expression in MCAO animals, but chlorogenic acid treatment alleviated these changes by MCAO damage. Glutamate significantly reduced cell viability, and chlorogenic acid treatment alleviated this reduction in a dose-dependent manner. Glutamate induced a decrease in Bcl-2 expression and an increase in Bax expression, but chlorogenic acid treatment alleviated these changes. We found that chlorogenic acid alleviates changes in the expression of Bcl-2 and Bax proteins induced by brain injury. Therefore, our findings provide an evidence that chlorogenic acid has neuroprotective effects against MCAO damage by modulating Bcl-2 and Bax proteins.
Background: Cisplatin is a well-known platinum-containing anti-cancer drug against bladder, ovarian, lung and testicular cancer. However, the potential effects and molecular targets of cisplatin in human mucoepidermoid carcinoma (MEC) are not fully understood. Here, we investigated the apoptotic effect and underlying mechanism of cisplatin in human MEC cells.
Methods: The potential effects of cisplatin were evaluated by trypan blue exclusion assay, Western blotting, 4’-6-diamidino-2-phenylindole (DAPI) staining, live/dead assay and immunocytochemistry.
Results: Cisplatin suppressed cell growth and enhanced expression of cleaved PAPR in MC3 and YD15 cells. Cisplatin caused morphological change of nuclei and increased the number of ethidium homodimer-1-stained cells. In addition, cisplatin commonly increased Bax activation in both cells, while other Bcl-2 family proteins were not affected.
Conclusions: These results suggest that cisplatin might induce apoptosis by activating Bax protein, which would provide baseline data for development of effective treatment strategy against MEC.
Glycoproteins isolated from fruit bodies and mycelial cultures of mushrooms exhibit anti-carcinogenic actions in human cancer cells and animal tumor cells by induction of apoptosis. Here, we report that isoflavone-conjugated glycoproteins (designate Gluvone), exhibit strong anti-carcinogenic effects on human breast cancer MCF-7 cells by induction of apoptosis. Gluvone with 9.4 kDa of molecular weight was isolated from submerged-liquid culture of Agaricus blazei mycelia (ABM) in soy flake-containing liquid medium. MCF-7 cells were incubated with various amounts of Gluvone (0~250 μM) for a period of 6 days. Gluvone exhibited anti-proliferative actions in a dose-dependent manner and 62% growth inhibition at 200 μM for 4 days relative to control. Hoechst 33258 staining analysis revealed that Gluvone induced formation of apoptotic bodies. Gluvone was associated with down-regulation of anti-apoptotic Bcl-2 protein expression as well as up-regulation of pro-apoptotic Bax protein expression. Gluvone treatment induced proteolytic activation of caspase-9 and caspase-3 through cytochrome c release from mitochondria to cytosol as well as concomitant degradation of poly (ADP-ribose) polymerase (PARP). In addition, Gluvone induced activation of caspase-8. Taken all together, these results indicate that the anti-proliferative effect of Gluvone is associated with induction of apoptotic cell death through the mitochondrial dysfunction pathway mediated by enhancement of Bax protein expression and suppression of Bcl-2 protein expression.
본 연구에서는 효모에서 과 발현하는 Bax inhibior와 관련된 유전자를 동정하여 특성화 하였다. Yeast functional screening이라는 방법을 이용하여, 일반적은 환경에서 재배된 벼의 cDNA를 QX95001에 형질전 환하여 SD-galactose-Leu--Ura-배지에서 생성된 8개의 클론을 선발하였다. 그 중 AtBI-1과 같은 domain이 있는 D2-234를 포함하여 5개의 클론을 선발하였다. D2-243는 741bp의 염기서열과 247개의 아미노산으로 구성되었고 5 membrane-spanning 단편으로 되어 있음을 확인하였다. D2-234는 SD-galactose--배지에서 세포성장이 왕성하였다. 본 실험에서 얻어진 결과는 벼 식물에서 나타나는 세포예정사와 관련된 단백질을 선발하는데 유용하게 이용될 것으로 생각된다.
This study aims to reveal how EA affects BAX and NF-kB involved in cell deaths from global ischemia, and to do this, observes the changes of BAX and NF-kB caused by EA application after transient global ischemia. The experimental method is to give rise to global ischemia and apply EA to 27 SD rats with the particulars of being six-week-old, male, around-300 gram-weighing, and adapted to laboratory environment for more than a week, and divide them into three groups, that is, GV20 EA group(n=9), L14 EA group(n=9), no-treatment GI group(n=9), and then observe their changes of BAX and NF-kB at the time lapse of 6 hours, 9 hours and 12 hours after ischemia, using western blotting. The numerical decrease of BAX expression at the time lapse of 9 hours after EA application, though not statistically significant, was observed in GV20 EA group and L14 EA group, and the NF-kB expression appeared statistically significant decrease in GV20 EA group and L14 EA group, but the expression was higher in the group with EA application. Therefore, EA application at the early phase of global ischemia is considered to affect BAX and NF-kB and play a positive role in decreasing apoptosis and cell deaths by inflammation.
Neural stem cells are found in adult mammalian brain regions including the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ). In addition to these two regions, other neurogenic regions are often reported in many species. Recently, the subcallosal zone (SCZ) has been identified as a novel neurogenic region where new neuroblasts are spontaneously generated and then, by Bax-dependent apoptosis, eliminated. However, the development of SCZ in the postnatal brain is not yet fully explored. The present study investigated the precise location and amount of neuroblasts in the developing brain. To estimate the importance of programmed cell death (PCD) for SCZ histogenesis, SCZ development in the Bax-knockout (KO) mouse was examined. Interestingly, an accumulation of extra neurons with synaptic fibers in the SCZ of Bax-KO mice was observed. Indeed, Bax-KO mice exhibited enhanced startle response to loud acoustic stimuli and reduced anxiety level. Considering the prevention of PCD in the SCZ leads to sensory-motor gating dysfunction in the Bax-KO mice, active elimination of SCZ neuroblasts may promote optimal brain function.
Environmentally inflicted stress (abiotic stress) such as high drought stress could be limiting the plant productivity. The mechanism of drought stress signaling in plant related with anti-apoptosis has not yet been full described. Understanding drought stress signaling is key to producing drought-tolerant plant. In this study we recently have identified Oryza sativa genes related abiotic stress water deficit. Abiotic stress related genes were screened from Oryza sativa cDNA library and identified gene by yeast functional screening. The yeast expression showed that they east cell grow well on SD-galactose-Leu-Ura-. The screening of over than 7000 clones from Oryza sativa cDNA libraries has been identified. 28 clones that survived following BAX-expression on inducible galactose medium. R12H780 clones confirmed protein prediction like putative senescence-associated-protein. This gene contains an open reading frame (ORF) of 108 amino acids. Transcription of R12H780 was induced in response to drought stresses, RT-PCR analysis showed transcript level in plant strongly detected in earliest time of drought stress treatment. Yeast transformed with R12H780 gene displayed markedly improved tolerance to PEG treatment, and high salinity in comparison to the control yeast (vector only). The results indicate R12H780 expression represents a new type of drought stress related gene with anti-apoptotic in Oryza sativa and endows tolerance to several types abiotic stress.
Apoptosis of the cell is one of the key steps in tissue remodeling and functional differentiation. At the time of implantation there are dramatically remodeling and functional differentiations of uterine endometrium. Decidualization is the process by which the uterine stromal cells proliferate and differentiation into morphologically and functionally distinct decidual cells. Bax is one of the key molecules in apoptotic process during that time. It is known that Bax expression have characters of time specificity and tissue specificity but the role of implantation is not largely unknown. The aim of this study was to examine the embryo implantation and decidualization reaction in order to understand the role of pro-apoptotic Bax gene as a major regulator of apoptosis of decidual cells. Some of Bax knockout mice have coat pigmentation defects involving white color. The number of blue bands after embryo transfer (ET) was not different between the control and Bax-knockout (Bax-KO) black coat (BC) and white coat (WC). Decidua were normally differentiated in both control and Bax-KO BC, but deciuda were not detected in Bax-KO WC at 96 hr post ET. Moreover, embryos of Bax-KO WC stayed in dormant stage on the embryonic day 7.5 and day 9.5. These results suggest that Bax and its related unknown genes may be a key molecule in implantation and uterine decidual reaction.
the pupose of this study was to investigate the effects of gonadotropin and nitric oxide (NO) on the expression of mouse follicular bad and bax genes that are known induce apoptosis. Large and midium size follicles of immature mice were obtained at 0, 24, and 48 hours time intervals after Pregnant Mare's Serum gonadotropins(PMSG, 5 I.U.) injection. Preovulatory follicles collected at 24 hrs after PMSG injection were cultured with or without various chemicals such as gonadotropin, gonadotropin Releasing hormone(GnRH), testosterone, Sodium nitroprusside (SNP) for 24 hrs at . After 24 hrs culture, the culture media was used for nitrite assay and total RNA was extracted, subjected to RT-PCT for the analyses of bad and bax expression. We found that expression of bad and bax genes in follicles was markedly reduced before and after in vivo priming with hCG. When the preovulatory follicles were cultured for 24 hrs in culture media with PMSG and hCG, the expression of bad and bax genes was decreased. Moreover, SNP (NO generating agent) can significantly suppress the expression of bad and bax genes in follicles when apoptosis was induced by GnRH agonist and testosterone. At the same time, nitrite production of culture media was increased in GnRH agonist + SNP, testosterone + SNP and SNP treated groups than control group. These data demonstrated for the first time that peptide hormones and NO may play important roles in the regulation of mouse follicular differentiation and may prevent apoptosis via supressing the expression of bad and bax genes.