As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 °C and a low thermal expansion coefficient (11.46×ppm/°C), respectively.
We successfully synthesized a porous carbon material with abundant hexagonal boron nitride (h-BN) dispersed on a carbon matrix (p-BN-C) as efficient electrocatalysts for two-electron oxygen reduction reaction ( 2e− ORR) to produce hydrogen peroxide ( H2O2). This catalyst was fabricated via ball-milling-assisted h-BN exfoliation and subsequent growth of carbon structure. In alkaline solutions, the h-BN/carbon heterostructure exhibited superior electrocatalytic activity for H2O2 generation measured by a rotating ring-disk electrode (RRDE), with a remarkable selectivity of up to 90–97% in the potential range of 0.3–0.6 V vs reversible hydrogen electrode (RHE), superior to most of the reported carbon-based electrocatalysts. Density functional theory (DFT) simulations indicated that the B atoms at the h-BN heterostructure interface were crucial active sites. These results underscore the remarkable catalytic activity of heterostructure and provide a novel approach for tailoring carbon-based catalysts, enhancing the selectivity and activity in the production of H2O2 through heterostructure engineering.
As product diversity increases and product life cycle gets shorter, lead time reduction and manufacturing cost saving of die & mold are getting important in machinery, automotive, and electronics industries. To develop a novel free-machining die & mold steel, we try to modify the chemical compositions of AISI P20 mold steel by adding boron, nitride, and sulfur. After making three types of mold steels which are base metal of AISI P20 mod., boron and nitrogen added, and boron, nitrogen, and sulfur added to the base metal. Milling tests are carried out using TiN, TiCN, and TiAlN coated WC end-mills under various cutting conditions. Boron and nitrogen added steel machined by TiN coated tool shows the most excellent tool wear and surface roughness characteristics. The results might come from BN inclusions in base metal acting as a stress concentration source and lowering strain resistance during cutting process. The relationship between tool wear and surface roughness are also discussed including feed rate effects.
Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a B4C layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a B4C target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and B4C were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of sp3 BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.
본 논문의 연구목적은 Choroidal neovascularization (맥락막 신생혈관) 모텔에서 HO-1 발현제와 억제재의 영향을 알아보고자 한다. 30마리의 Brown Norway rat을 각각 10마리씩 세 그룹, Hemin treated group, SnPP treated group, Contorl group으 로 나누어서 실험을 진행하였다. Hemin treat group은 10μmol/kg hemin(Frontier Scientific Inc. USA) 을 SnPP treat group은 10 μmol/kg SnPP(Frontier Scientific Inc. USA)을 laser 시술 2 일에서 14 일까지 복강내 주사하였고 Control군은 0.5 mß씩 식 염 수를 주사하였다. 14 일 후 안저사진촬영과 형광안저촬영을 실시하였다. SnPP treated group에서 Hemin treated group보다 더 많은 선생혈관이 생성되었다. Hemin treated group에서는 맥락막 신생혈관 형성의 정도가 정상대조군에 비교하여 저하됨을 알 수 있었다. 본 연구의 결과 HO-1 의 inducer 인 Hemin 이 맥락막의 신생혈관 억제에 영향을 미치는 것으로 보여진다.
질화규소-질화붕소 복합재료의 접촉하중에 의한 손상거동을 질화붕소 첨가량의 함수로 고찰하였다. Indentation응력-변형율 곡선은 선형성을 벗어나 소성 특성을 갖는 재료임이 밝혀졌으며, 재료 표면으로 부터의 ring이나 cone형상의 균열 대신 표면하부에 전단응력에 의한 마이크로 크기의 준소성 변형 영역이 넓게 형성되어 손상저항성이 높은 재료로의 활용이 기대되었다. 이 때 마이크로 파괴와 연관된 shear faults가 이 재료의 소성을 갖도록 하는데 중요한 역할을 하였다. 질화붕소의 첨가량이 증가함에 따라 질화규소-질화붕소 재료는 보다 soft해지고 준소성의 특성을 나타내었다.
Si3N4와 BN의 선택적 산화반응과 질소분위기 소결에 의하여 Si2N2O로 결합된Si3N4-BN복합재료를 개발하였으며, 이때 산화반응 온도와 CaO의 첨가가 Si2N2O의 생성에 미치는 영향을 고찰하였다. Si2N2O상이 도입된 Si3N4-BN복합재료는 내열충격성 및 용강에 대한 내침식성이 우수하여 연속제강새안의 부품인 break ring등의 소재로 사용될 수 있다.
댐 위험도 해석시 수문학적 변량(강수, 유출 및 수위)들의 상호관계를 고려한 체계적인 분석과정이 요구된다. 그러나 기존 댐 위험도 해석 연구에서는 변량간의 체계적인 관계 평가를 수행하는데 있어서 한계점을 나타내고 있다. 이러한 점에서, 본 연구에서는 수리·수문학적 변량간의 관계를 효과적으로 평가하고자 Bayesian Network 기반의 댐 위험도 해석 기법을 개발하였다. 실제 댐에 대해서 제안된 모형을 적용한 결과 파괴인자간의 상호관계 규명 및 불확실성을 평가하는데 있어서 기존 연구보다 쉽게 가장 큰 파괴인자를 파악할 수 있는 장점이 있었다. 이와 더불어 다양한 시나리오에 따른 댐의 안정성을 파괴확률 및 예상피해의 함수인 위험도로 평가할 수 있도록 하였다. 즉, 기존 댐 위험도 기법으로 수행한 결과에서는 월류 확률이 도출 되지 않았지만, Copula 함수를 도입하여 댐 초기수위를 고려한 결과 댐 월류 확률이 발생하였 으며, 피해결과 역시 크게 증가하고 있는 것을 확인할 수 있었다. 이러한 결과를 기반으로 향후 댐의 보수보강 등의 우선순위 결정을 위한 도구로서 활용이 가능할 것으로 판단된다.
포장상태에서의 케놀라의 저온반응성 유전자인 BN28 과 BNl15 의 발현정도와 그 유전자들의 내 동성에 대한 역할을 구명하기 위하여 6개 품종 ( WRG86, CDH3, Dusul Ceres, Accord, KWC-4113)을 파종기를 달리 하여 파종하고 파종후 15일 간격으로 Sample를 채취하여 RNA를 추출하고 northern blot analysis로써 두 유전자의 발현정도를 조사하였던바 그 결과를 요약하면 아래와 같다. 1. 두 유전자의 발현시 기는 내동성이 증가하는 시기보다 조금 앞서는 것으로 나타났으며 이는 식물체가 내동성을 얻기 위하여 이 유전자의 발현을 필요로 하거나 혹은 이 유전자 발현을 조절하는 요인중 온도 이외의 환경요인이 관여하는 것으로 나타났다 하지만 유전자 발현이 급격히 증가하는 시기가 세 파종시기 처리에 있어서 일치하는 점과 또한 내동성의 급격한 증가시기와 일치하는 점으로 미루어 보아 이 유전자 발현을 조절하는 가장 중요한 요인은 저온인 것으로 생각된다. 2. 발현양식에 있어서 두 유전자간의 차이가 관찰 되었는데 이는 두 유전자가 각각 다른 조절기작을 통하여 발현이 통제되는것으로 생각되며 이러한 포장에서의 발현양식은 실험실에서의 그것과 일치하는 것으로 나타났다. 3. 유전자가 발현되어 증가되는 시기는 식물체의 내동성이 증가되는 시기와 일치되었다. 하지만 특정한 시점에 있어서 각 품종간의 내동성의 정도와 유전자 발현정도는 일치하지 아니하였다.