검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal-based graphite has become the main material of emerging industries. The microstructure of coal-based graphite plays an important role in its applications in many fields. In this paper, the effect of carbon disulfide/N-methyl-2-pyrrolidone solvent mixture extraction on the microstructure of bituminous coal-based graphite was systematically studied through preliminary extraction coupled with high-temperature graphitization. The graphitization degree g (75.65%) of the coal residue-based graphite was significantly higher than that of the raw coal-based graphite. The crystallite size La of the coal residue-based graphite was reduced by 47.06% compared with the raw coal-based graphite. The ID/ IG value of the coal residue-based graphite is smaller than that of the raw coal-based graphite. The specific surface area (16.72 m2/ g) and total pore volume (0.0567 m3/ g) of the coal residue-based graphite are increased in varying degrees compared with the raw coal-based graphite. This study found a carbon source that can be used to prepare coal-based graphite with high graphitization degree. The results are expected to provide a theoretical basis for further clean and efficient utilization of the coal residue resources.
        4,000원
        4.
        1997.06 KCI 등재 서비스 종료(열람 제한)
        It has been studied that combustion and the production of air pollution of anthracite - bituminous coal blend in a fluidized bed coal combustor. The objects of this study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and imported high calorific bituminous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010㎉/㎏ and the imported high grade bituminous coal with heating value of 6,520㎉/㎏. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300scfh which was the fastest. It has been found that O_2 and CO_2 concentration were reached steady state at about 100 minute. It has been found that O_2 concentration decreased and CO_2 concentration increased as the height of fluidized bed increased. It was found that splash zone was mainly located from 25㎝ to 35㎝ above distributor. Also, as anthracite fraction increased, the mass of elutriation particles increased, and CO_2 concentration decreased. As air flow rate increased, O_2 concentration decreased and CO_2 concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approximately high in the case of fine particles. As anthracite fraction and air flow rate increased, elutriation ratio increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was increased. Regardless of anthracite fraction, size distribution of bed material from discharge was almost constant. Over bed temperature 850℃ and excess air 20%, the difference of combution efficiencies were little. It is estimate that the combustion condition in anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 850℃, the excess air 20%.