본 연구에서는 온실가스 배출을 감축하기 위해 메탄올을 추진 연료로 사용하는 선박에 수소 연료전지 시스템이 추가된 하 이브리드 시스템 공정을 설계하였다. Case1에서는 메탄올 연료 엔진 시스템을 설계하여, 엔진에 가솔린 대신 메탄올을 연료로 공급했 을 때의 배기가스 배출량을 알아보았다. Case2에서는 Case1에 메탄올 개질 시스템을 추가해, 수소연료전지 시스템을 설계하였다. 이 하 이브리드 시스템에서는 그레이 수소를 생산하며, 엔진과 연료전지의 출력을 조합하여 선박을 구동한다. 하지만 그레이 수소는 수소를 생산하는 과정에서 탄소를 배출한다는 단점이 있다. 이 점을 보안하기 위해 Case3에서는 CCU시스템을 추가하였다. Case2에서 배출한 Flue gas의 이산화탄소를 포집한 후, 그레이 수소와 합성해 블루 메탄올을 생산하였다. 본 연구에서는 Case study를 통해 개질 온도22 0℃, 개질 압력500kPa, SCR은 1.0, flow ratio가 0.7일 때 최적의 운전조건임을 알 수 있었다. Case3의 시스템은 Case1에 비해 탄소 배출량 을 42% 감소시켰다. 결과적으로, Case3의 하이브리드 시스템을 통해 선박의 이산화탄소 배출을 유의미하게 저감할 수 있을 것으로 예 상한다.
In this work, subabul wood biomass was used to prepare carbon adsorbents by physical and chemical activation methods at various carbonization temperatures. The properties of the carbon adsorbents were estimated through characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, X–ray photo electron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis and N2 adsorption studies. Subabul-derived carbon adsorbents were used for CO2 capture in the temperature range of 25–70 °C. A detailed adsorption kinetic study was also carried out. The characterization results indicated that these carbons contain high surface area with microporosity. Surface properties were depended on treatment method and carbonization temperature. Among the carbons, the carbon prepared after treatment of H3PO4 and carbonization at 800 °C exhibited high adsorption capacity of 4.52 m.mol/g at 25 °C. The reason for high adsorption capacity of the adsorbents was explained based on their physicochemical characteristics. The adsorbents showed easy desorption and recyclability up to ten cycle with consistent activity.
Here, we report the preparation of microporous-activated carbons from a Brazilian natural lignocellulosic agricultural waste, cupuassu shell, by pyrolysis at 500 ºC and KOH activation under different experimental conditions and their subsequent application as adsorbent for CO2 capture. The effect of the KOH:precursor ratio (wt/wt%) and the activation temperature on the porous texture of activated carbons have been studied. The values of specific surface area ranged from 1132 to 2486 m2/ g, and the overall micropore volume ranged from 0.73 to 1.02 cm3/ g. Carbons activated with 2:1 ratio of KOH and activation temperature of 700 ºC presented a CO2 adsorption at 1 bar of 7.8 and 4.4 mmol/g at 0 °C and 25 ºC, respectively. The isosteric heat of adsorption, Qst , was calculated for all samples by applying the Clausius–Clapeyron approach to CO2 adsorption isotherms at both temperatures. The values of CO2 adsorption capacities are among the highest reported in the literature, especially for activated carbons produced from biomass.
Radioactive carbon dioxide (14CO2) capture using innovative materials is desirable due to associated radiological hazards, and growing climate change. Mineral carbonation technology (MCT) is amenable to irreversibly capture CO2. Typically, MCT is attractive because capturing carbon through the chemical reaction between alkaline earth metal ions and CO2 forms insoluble and significantly stable carbonates. However, most applications of MCT have an intrinsic restriction regarding their operational conditions since no forward reaction occurs within realistic time scales. Thereby, the CO2 capture performance, such as CO2 capacity and carbonation reaction rate, of MCTs and their applications are severely restricted by the difficulty of operations under mild conditions. For example, natural minerals require aggressive carbonation reaction conditions e.g. high pressure (≥ 20 bar), high temperature (> 373 K), and pH-adjusted carrier solutions. To overcome such obstacles, the fabrication of alkaline earth oxides impregnated into an amorphous glass structure have been recently developed. They show enhanced rates of dissolution of alkaline earth metal ions and carbonation reaction due to the loosely packed glass structure and the generation of a surface coating silica gel, consequently facilitating CO2 capture under mild conditions. In this presentation, we report the synthesis and application of a crystallized glass tailored by controlled heat treatment for CO2 capture under mild conditions. The controlled heat treatment of an alkaline earth oxide-containing glass gives rise to a structural transformation from amorphous to crystalline. The structural characterizations and CO2 capture performance, including CO2 capacity, carbonation reaction rate, and the dissolution rate of alkaline earth metal ion, were analyzed to reveal the impact of controlled heat treatment and phase transformation.
Global warming and climate changes are the ultimate consequences of increased CO2 volume in the air. Physical activation was used to prepare high-throughput activated carbon from a low-cost date stone. The adsorption performance of activated carbon using fixed bed for CO2 separation was studied. The reliance of temperature, flow rate, and initial CO2 concentration levels on breakthrough behaviour was analysed. The adsorption response was explored in terms of breakthrough and saturation points, adsorption capacity, temperature profiles, utilization factor, and length of mass-transfer zone. Increased temperatures lead to vary the breakthrough periods notably. The vastly steep breakthrough curves reveal satisfactory utilization of bed capacity. LMTZ is varied positively with increased feed rates and temperatures. The high utilization factor of 0.9738 with 1.66 mmol/g CO2 uptake was acquired at 298 K and 0.25 bars. The findings recommend that the carbon prepared from date stone is encouraging to capture CO2 from CO2/ N2 mixture.
Increasing ambient carbon dioxide ( CO2) concentration from anthropogenic greenhouse gas emission has contributed to the growing rate of global land and ocean surface temperature. Various carbon capture and storage (CCS) technologies were established to mitigate this impending issue. CO2 adsorption is gaining prominence since unlike traditional chemical absorption, it does not require high energy usage for solvent regeneration and consumption of corrosive chemical solvent. In CO2 adsorption, activated carbons show high CO2 adsorption capacity given their well-developed porous structures. Numerous researches employed oil palm wastes as low-cost precursors. This paper provides a comprehensive assessment of research works available thus far in oil palm-derived activated carbon (OPdAC) for CO2 adsorption application. First, we present the desired OPdAC characteristics and its precursors in terms of their chemical properties, elemental, and proximate compositions. This is followed by an overview of various activation methodologies and surface modification methods to attain the desired characteristics for CO2 adsorption. Then the focus turned to present available OPdAC CO2 adsorption performance and how it is affected by its physical and chemical characteristics. Based on these, we identify the challenges and the potential development in different aspects such as precursor selection, process development, and optimization of parameter. A pilot scale production cost analysis is also presented to compare various activation and surface modification methods, so that the appropriate method can be selected for CO2 adsorption.
이산화탄소 포집 및 저장기술(CCS)은 인류발생적 요인에 의한 이산화탄소 배출 증가와 그로 인한 기후변화를 완화시킬 수 있는 기술 중 하나이다. 그 중, 매체 순환식 연소(chemical looping combustion, CLC)와 칼슘루핑(calcium looping) 기술은 현재 아민 스크러빙(amine scrubbing)을 대체할 수 있는 유망한 기술로 주목받고 있다. 두 방법 모두 금속 산화물을 이용한 연속적인 순환 사이클 반응에 의한 것이다. 전체적인 이산화탄소 포집 및 저장 성능의 향상을 위해서는 사이클을 거듭 하며 발생하는 소결(sintering)로 인한 안정성 저하 문제를 해결하고 금속 산화물의 구조 또한 최적화해야 한다. 금속 산화물 표면에 얇은 박막을 형성하는 것은 소결로 인한 손상을 막을 수 있는 방법이다. 이러한 박막 제조 기술로 잘 알려진 기술에는 화학기상증착법(chemical vapor deposition)과 원자층증착기술(atomic layer deposition)이 있다. 본 총설에서는 CVD, ALD 기술을 비롯하여 효과적인 반응 안정성 향상을 위한 안정제 첨가 방법, 금속 산화물 구조 개선에 대한 다양한 최근 기술들을 다루었다.
천연가스, 산업공정, 화석연료의 연소과정과 같은 대규모 고정 배출원에서 발생하는 온실가스인 CO2를 포집하기 위한 기술 개발이 전 세계적으로 활발하게 수행되고 있다.
특히, 습식 흡수 법은 비교적 낮은 CO2분압에서도 높은 제거 효율을 달성할 수 있어 많은 개발이 이루어져온 포집 기술이다.
하지만 흡수제의 재생에 필요한 에너지가 과다한 문제가 있으며, 충분한 부지가 확보되어야하기 때문에 공정 상용화에는 큰 걸림돌이 있다.
이러한 문제를 극복하고 공정 효율을 개선 할 수 있는 접촉분리막 공정 기술이 최근 주목받고 있다.
본 연구에서는 접촉분리막과 화학적 습식 아민 흡수제를 이용한 이산화탄소 제거 특성을 분석하였다.