Somatic cell nuclear transfer (SCNT) for miniature pig has been developed for xenotransplantation and many other biomedical experiments. However, the efficiency of SCNT is still very low due to many factors. To optimize the surrogate mother condition for improvement of cloned miniature pigs efficiency, we investigated the effect of the status of surrogate mother on pregnancy, farrowed rate in SCNT pigs. After SCNT with mesenchymal stem cells as donor cells, the SCNT embryos were surgically transferred into the oviduct of surrogated pigs. To compare the effects of status of surrogate pigs on pregnancy, surrogate pigs were prepared by artificial abortion at day 20~29 (Group 1), 30~39 (Group 2), and 40~45 (Group 3) of gestation. After SCNT embryos transfer in three different status of surrogate pigs, Group 2 (56.3%) and 3 (55.6%) had significantly ( <0.05) higher the pregnancy rate than group 1 (0%) at day 30 of gestation. The status of ovulation in surrogate pig also was investigated. Post-ovulation status (54.8%) had higher proportion than pre-ovulation status (38.7%) and ovulation status (6.5%). We obtained 19 cloned miniature piglets from seven surrogate gilts and five piglets are living healthy but fourteen piglets died soon after birth or stillbirth. The weights of piglets greatly differ from 254 to 1,296 g. Microsatellite analysis showed that cloned piglets were genetically different from the surrogate mother and cloned piglets were genetically equal to the donor cell. In conclusion, the present result indicates that artificially abortion method can improve the efficiency of pregnancy after SCNT in pigs. This study will provide available method for the further study and application in the field of xenotransplantation.
The purpose of this study was undertaken to evaluate of cryopreservation efficiency in α 1,3-galactosyltransferase knock-out(GalT KO) cloned miniature pig sperm. To compare ability of frozen-thawed sperm characteristics, three different pig strains (GalT KO) cloned miniature pig, PWG miniature pig and Duroc were used. The ejaculated semen from the three pig species was diluted with same volume extender and added to LEY solution for freezing. The diluted semen was placed in 0.5 ml straws, and freezing was initiated by exposing the straws to liquid nitrogen (LN2) vapours for 10 min before placing them into LN2 for cryopreservation. A fter thawing, the sperm ability were assessed for viability (SYBR-14/PI staining), abnormality (Rose Bengal staining), and acrosome status (intactness, intensity and capacitation) (chlorotetracycline, CTC staining). The viability of frozen-thawed GalT KO pig sperm had no significant difference as compared with Duroc and PWG miniature pig sperm. However, The CTC pattern of frozen-thawed GalT KO cloned miniature pig spermatozoa showed significantly lower rates in F pattern and AR pattern (p<0.05) and significantly higher rates in B pattern than Duroc and PWG miniature pig (p<0.05). The abnormality of GalT KO cloned miniature pig sperm was significantly lower as compared to Duroc and PWG miniature pig sperm (p<0.05). In conclusion, GalT KO cloned miniature pig semen can be cryopreserved successfully and used for artificial insemination reasonably.