In this study, the effects of fuel injection pressure changed from 45 to 65 MPa on combustion and emission characteristics were investigated in a common rail direct injection (CRDI) diesel engine fueled with diesel and palm oil biodiesel blends. The engine speed and engine load were controlled at constant 1700rpm and 100Nm, respectively. The tested fuel were PBD20 (20 vol.% palm oil biodiesel blended with 80 vol.% diesel fuel). The main and pilot injection timing was fixed at 3.5°CA BTDC and 27°CA BTDC (before top dead center), respectively. The experimental results show that the combustion pressure and heat release rate increased. In addition, the indicated mean effective pressure (IMEP) and maximum combustion pressure increased with an increase of the fuel injection pressure. Hydrocarbon (HC), smoke opacity and carbon monoxide (CO) decreased, but oxides of nitrogen (NOx) emissions increased as fuel injection pressure increased.
In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
In this study, the effect of various pilot injection timings on combustion and emission characteristics were investigated in a common-rail direct injection (CRDI) diesle engine fueled with diesel-ethanol blends. The engine speed and engine load were controlled at constant 1500rpm and 70Nm, respectively. The tested fuels were DE0 (pure diesel fuel), DE5 (5 vol.% ethanol blended with 95 vol.% diesel oil), DE10 (10 vol.% ethanol blended with 90 vol.% diesel oil) and DE15 (15 vol.% ethanol blended with 85 vol.% diesel oil). The main injection timing was fixed at 0°CA TDC (top dead center), while various pilot injection timings including 25°CA BTDC (before top dead center), 20°CA BTDC and 10°CA BTDC were selected as the experimental variable. The experimental results showed that various pilot injection timings had little effect on the peak value of cylinder pressure, but had great influence on the start of combustion. The peak value of heat release rate (HHR) increased with the increase of ethanol content. However, the peak value of HRR reduced as the pilot injection is delayed. The diesel fuel containing 10% ethanol had a highest peak value of combustion pressure compared with the others, while the pilot injection timing occurred at 25°CA BTDC. On the other hand, the exhaust emissions of DE10 was also the lowest compared with the others. In addition, with the increase of ethanol content in diesel the PM and NOx emissions reduced.
In this study, we investigated the effects of EGR rate and engine load on the emission characteristics in a 4-cylinder common rail direct injection diesel engine fueled with canola oil biodiesel (BD) blended fuel. The biodiesel blend fuel, BD20 (20 vol.% biodiesel and 80 vol.% ULSD blend) was used at an engine speed of 1,500rpm. The experimental results showed that with the increasing of EGR rate, the combustion pressure and rate of heat release (ROHR) of three test fuels were decreased, and the ignition delay was extended, the carbon monoxide (CO) and particulate matter (PM) emissions increased slightly, but the nitrogen oxide (NOx) emission decreased clearly. On the other hand, with the increasing of engine load, the combustion pressure and ROHR were increased, and the CO and PM emissions decreased. However, the NOx emission was increased due to the rise of the combustion temperature.
This study describes the effects of canola oil biodiesel (BD) blended fuel on the combustion performance and emission characteristics in a 4-cylinder common-rail direct injection diesel engine. In this study, with the increasing of engine loads, the biodiesel blend fuels(100 vol.% ULSD and 0 vol.% biodiesel blend, BD0; 80 vol.% ULSD and 20 vol.% biodiesel blend, BD20; 0 vol.% ULSD and 100 vol.% biodiesel blend, BD100; ULSD: ultra low sulfur diesel) were used at an engine speed of 1,500rpm. The experimental results showed that with the increasing of biodiesel blend rate, the combustion pressure decreased slightly at engine load of 20~60Nm. However, the rate of heat release (ROHR) increased clearly and ignition delay time was shortened. With the increasing of biodiesel blend rate, the carbon monoxide (CO) and particulate matter (PM) emissions were more decreased at all of the engine loads.
This study was performed to investigate the effect of fuel combustion enhancing apparatus(FCEA) for ionization of intaking air into cylinder combustion chamber on the combustion performance and emissions characteristics in a 4-cylinder common-rail direct injection diesel engine. The experiments were applied to the engine at an engine speed of 1,500rpm under 20Nm, 40Nm, 60Nm and 80Nm conditions. The test results were compared to each other with or without the FCEA. In the case of the FCEA, the combustion pressure, peak combustion pressure and rate of heat release were increased slightly and the brake specific fuel consumption(BSFC) was decreased slightly when compared to that without the FCEA under all loads at an engine speed of 1,500rpm. However, in the case of the FCEA, the nitrogen oxide(NOx) were increased slightly, the carbon monoxide(CO) and particulate matter(PM) were decreased slightly when compared to that without the FCEA under all loads at an engine speed of 1,500rpm.