The awareness of the high-value industry for container terminal leads competitiveness of container terminals to keep high fiercely. In regards to competitive factors of container terminal, the most important point among several factors is seemed to be the speed of container loading and unloading on quayside. In container terminals in Korea, the productivity shows big difference even though its condition is similar to each terminal. The objective of this paper is to find the critical factors of container terminal productivity, which is dependant upon the capability, quantity of quay crane, transfer vehicle, and so on. For this purpose, we have researched related literatures, and collected data about container terminals in South Korea. Furthermore, we tested sensitive analysis to evaluate the extent of productivity by changing independent variable. And then we established the regression model to evaluate which factor has had the biggest impact on productivity. The results of this paper can give terminal operators guideline to improve productivity.
본 연구에서는 수직배치형 장치장 블록형태의 자동화 컨테이너 터미널을 대상으로 안벽에서 컨테이너의 양·적하 작업을 수행하는 안벽크레인(Q/C)에 대한 하역생산성을 평가해 보았다. 분석 대상이 되는 안벽크레인의 유형으로 기존의 싱글트롤리 타입외에 차세대 안벽크레인으로 인식되고 있는 듀얼트롤리 더블트롤리, 수직순환식의 하역방식을 가지는 네 가지 장비이다. 이들은 각기 다른 방식으로 선박의 컨테이너를 하역하며, 이들 각각에 대해 기계적 생산성과 순작업 생산성을 산출해 보았다. 특히, 안벽크레인의 순작업 생산성을 산출하기 위해 각 장비에 대한 시뮬레이션 모델을 수립하고 이를 적용한 시뮬레이션 시스템을 개발하였으며, 개발된 시뮬레이션 시스템을 통해 내 가지 안벽크레인에 대한 다양한 시뮬레이션이 수행되었다.
본 연구의 목적은 컨테이너터미널의 생산성 향상을 위한 새로운 운영시스템 기술 도입에 따른 기대효과를 분석하는 것이다. 컨테이너터미널의 운영시스템을 종합관제시스템 운영시스템, 계획시스템, 정보기술 등의 크게 4가지 기능으로 분류하며, 총 19가지 신기술 대안을 선정하였다 선정된 운영시스템 기술대안에 대해서 현장 전문가를 대상으로 한 설문조사 및 면담조사를 통하여 기술대안별 중요도와 생산성 향상지수를 추정하고 생산성 향상 평가모형을 수립하였다. 또한, 생산성 향상 평가모형을 이용하여 운영시스템 기술 도입에 따른 대안별 기대 생산성을 산출해 보았다 따라서, 새로운 운영시스템의 도입시 기대 생산성을 분석하고자 할 경우에 유용하게 사용 가능할 것으로 본다.
The productivity of container terminal is determined by its various operation methods. This paper aims at finding out the factors to enhance the productivity of container handling of quay crane, using simulation technique. Three levels of decision making in terminal operation, strategy, and tactics and operation are selected for defining parameters of simulation The result of the simulation and test shows that the significant factors to improve the productivity are the stack height of container, block dispersion and the distance in yard planning for shipment. Decision making in the operation level, however, is of significance in the mixed condition of strategic and tactical level. The result shows meaningful guidelines in decision making under strategic, tactical and operation level.
Container terminal productivity is a critical factor for both the terminal operator and liner companies. For the former it is a determinant factor of the competitiveness and profit of terminal, and for the later it is one that determines ships' tern round time and hence ships' operation costs. The concept and measures of productivity are however not well defined and unified throughout terminals in the world. This paper therefore deals with the empirical study on the evaluation of container terminal productivity. It first clarifies the concept of terminal productivity, and secondly based on the actual data on container terminals in and outside Korea, productivity is evaluated and compared. Finally, problems hampered efficient operation of Korean terminals are derived, and several comments are suggested for solving them.
Since the middle of 1950's, containerization has been rapidly spread over the world in virtue of great merits providing to interensts, and the fundamental changes in port management and prot operations are resulted. As the container terminal is a complex system which is consisted of various subsystems, the treatment for improving the productivity is required in a comprehensive fashion, both in each of its parts and as an integrated system. This paper aims to make an intensive analysis of the Busan Container Terminal system, especially focusing on its subsystems such as ship operation system, storage system and transfer system. First of all, the intrinsic capacity of various subsystems is calculated and it is checked whether the current operation is being performed effectively through the formal analysis. Secondly, the suggestion is presented to improve the operation by considering the throughput that the port of Busan will have to accept in the near future. The results are as follows; 1) As the inefficiency is due to the imbalance between various subsystems at Busan terminal, transfer equipment level must be up to 31% for straddle carrier and 67% transfer crane above all. 2) The yard capacity must be increased by reducing the free dwell time of containers in order to accept the traffic volume smoothly in the near future. 3) The better way to reduce the port congestion is to change berthing rule from the FIFP to the Pre-allocated system by considering the ship arrival pattern.