검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        3.
        2023.11 구독 인증기관·개인회원 무료
        Deep disposal facility for High-Level radioactive Waste (HLW) uses a multi-barrier system to prevent the leakage of radionuclide. As a part of the engineered barrier, bentonite is primarily considered as the main buffering material. This is due to the adsorption and swelling properties of the bentonite, which are expected to effectively impede leakage of the radionuclide. In many cases, adsorption is generally regarded as occurring only within the buffer zone. However, several research has been conducted to explore the possibility of bentonite intrusion into the Excavation- Damaged Zone (EDZ) generated during excavation processes, because of the swelling properties of the bentonite. Generally, for host rock near the deep disposal facility such as granite, groundwater flows through the fracture network. Therefore, analysis of the characteristics of the fracture network is essential for predicting the behavior of radionuclide in groundwater. Accordingly, the bentonite intrusion into the fracture network is critical for safety assessment of the deep disposal facility. To analyze this, hydro-geochemical model was established utilizing COMSOL Multiphysics and PHREEQC, observing changes of the behavior of U (VI) along fracture network due to the swelling of bentonite. Modeling was conducted with progressively changing intrusion depth of the bentonite. According to the results, the behavior of U (VI) exhibited significant changes depending on the connectivity of the fractures. Based on the distribution characteristics of the fracture network, heterogeneous groundwater flow was observed. U (VI) was transported through the preferential pathway, which indicates high connectivity, due to the rapid groundwater flow. Notably, when changing the intrusion depth of bentonite, significant differences in behavior of U (VI) were observed in the 0-20 cm case. In contrast, as the intrusion depth increased, it was observed that differences became less evident. These results indicate that changes in the properties of fracture network in EDZ due to the swelling of bentonite significantly influence the behavior of U (VI).
        4.
        2022.10 구독 인증기관·개인회원 무료
        Excavation Damaged Zone (EDZ) is created by the excavation of deposition holes and disposal tunnels at high-level radioactive waste repository that causes macro- and micro-fracturing in the surrounding rock. Since EDZ can significantly increase the hydraulic transmissivity in the rock and act as a major pathway of leaked radionuclides, consideration of EDZ in terms of safety assessment is very important. Moreover, long-term stress changes such as stress redistribution due to excavation of nearby deposition holes and disposal tunnels, thermal stress due to temperature rise, effective stress change due to pore pressure change, and swelling pressure of bentonite buffer can increase EDZ size and change in thermal-hydraulic-mechanical properties, and consequently, it can affect the transport of radionuclides. Therefore, in order to analyze the effect of long-term evolution of EDZ on radionuclide transport, it is essential to conduct numerical analysis considering the coupled Thermal-Hydraulic- Mechanical (THM) behavior in EDZ. In order to simulate the behavior of EDZ, coupled THM model was developed using the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). The concept of damage was introduced to demonstrate the jointed rock as a continuous medium. Among several damage models, Mazars damage model was applied in this study. Mazars damage model is the most well-known model for concrete which has similar behavior with rock as brittle material, and the input data of the model can be easily obtained through laboratory testing. If damage occurs due to the influence of thermal-hydraulic-mechanical coupled behavior at the bedrock, the properties change according to the degree of damage, and as a result, the migration of the radionuclide is affected. Based on this conceptual model, radionuclide transport model in the near field considering the long-term evolution of EDZ was developed. To investigate the effect of EDZ in terms of process-based performance assessment, the modeling results with and without EDZ were compared. Finally, by simulating the coupled THM behavior of EDZ with damage model, the effect of long-term evolution of EDZ on radionuclide transport was investigated.
        5.
        2022.05 구독 인증기관·개인회원 무료
        In recent years, the importance of the thermo-hydraulic-mechanical-chemical coupled processes is increasing in the performance assessment (PA) of the high-level radioactive waste repository. In the case of mechanical behavior, it is very important because it can affect fluid flow and radionuclide transport by changing the porosity and permeability of the medium. In particular, Excavation Damaged Zone (EDZ) should be considered essential in PA because the migration of radionuclide is affected by the enhanced hydraulic transmissivity and altered geomechanical behavior of EDZ. Furthermore, due to various thermo-hydraulic behaviors such as decay heat generated from radioactive waste, pore water pressure increase, and swelling pressure of bentonite buffer material, mechanical evolution is occurred which may change the size and physical properties of EDZ. Therefore, to solve this problem, analysis of coupled thermal-hydraulic-mechanical (THM) processes with the effect of long-term evolution of EDZ due to the mechanical behavior should be accompanied. In this study, numerical model for the long-term evolution due to mechanical behavior considering EDZ using the Adaptive Process-based total system performance analysis framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). In the case of EDZ, the concept of Mazars’ damage evolution model was applied to simulate the behavior using the continuum model, and the change in hydraulic properties according to the degree of damage was considered. To investigate the importance of mechanical behavior in PA, the results were compared by performing numerical analysis according to the presence or absence of mechanical analysis. Finally, numerical analysis considering the mechanical evolution of EDZ was conducted using the model developed in this study to investigate the effect of EDZ.
        8.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        현재 고려되고 있는 단층 심지층처분장 개념은 부지 소요면적이 지나치게 크기 때문에, 처분밀도를 향상시키기 위한 다층 심지층처분장 개념이 제안되고 있다. 심부암반에 건설된 다층 심지층처분장 주위에 형성된 암반손상대가 심지층처분장의 온도 분포에 미치는 영향이 분석되었다. 다층 심지층처분장의 열해석에는 완충재, 뒤채움재 및 암반에서 일어나는 재포화 현상을 고려한 열-수리 모델이 사용되었다. 암반손상대의 존재는 심지층처분장의 온도 분포에 큰 영향을 미치는 것으로 나 타났으며, 손상대의 크기와 열전도도 저하 정도에 따라 복층 및 삼층 심지층처분장의 최고첨두온도를 각각 최대 7℃와 12℃ 까지 증가시킬 수 있다. 다층 심지층처분장의 첨두온도에 영향을 크게 미치는 인자는 암반손상대에서의 열전도도 저하이며, 처분공 주위에 형성된 암반손상대가 처분터널 주변에 형성된 암반손상대보다 첨두온도에 더 큰 영향을 미친다.
        5,500원