This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.
Kori unit 1, the first PWR (Pressurized Water Reactor) in Korea, was permanent shut down in 2017. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. Solid radioactive waste depending on the characteristics of the generation was classified into reactor vessel and reactor vessel internal, large components, small metals, spent nuclear fuel storage racks, insulation, wires, concrete debris, scattering concrete, asbestos, mixed waste, soil, spent resins and filters, and dry active waste. Radiological characterization of solid radioactive waste is performed to determine the characteristics of radioactive contamination, including the type and concentration of radionuclides. It is necessary to ensure the representativeness of the sample for the structures, systems and components to be evaluated and to apply appropriate evaluation methods and procedures according to the structure, material and type of contamination. Therefore, the radiological characterization is divided into concrete and structures, systems and components, and reactor vessel, reactor vessel internal and bioshield concrete. In this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. The results of this study can be used as a basis for the preparation of the FDP for the Kori unit 1.
The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. The amount of these wastes must be defined in the Final Decommissioning Plan for approval of the licensing. Also, in the case of liquid radioactive waste, it is necessary to calculate the generation amount in order to treat radioactive waste at a Radioactive Waste Treatment Facility (RWTF) or on-site. In this regard, there is no Code and Standard for the amount of liquid radioactive waste generated during NPP are dismantled, but ANSI/NS-55.6 describes the amount of liquid radioactive waste generated from a light water reactor type NPP. This code is applied to nuclear power-related facilities such as domestic NPP and radioactive waste disposal facility. Therefore, this review intends to suggest an application plan for domestic NPP decommissioning through codes for liquid radioactive waste expected to generate during nuclear power plant decommissioning.
The decommissioning of Korea’s nuclear power facilities is expected to take place starting with the Kori Unit 1 followed by the Wolsong Unit 1. In Korea, since there is no experience of decommissioning, considerations of site selection for the waste treatment facilities and reasonable selection methods will be needed. Only when factors to be considered for construction are properly selected and their effects are properly analyzed, it will be possible to operate a treatment facility suitable for future decommissioning projects. Therefore, this study aims to derive factors to be considered for the site selection of treatment facilities and present a reasonable selection methodology through evaluation of these factors. In order to select a site for waste treatment facilities, three virtual locations were applied in this study: warehouse 1 to warehouse 3. Such a virtual warehouse could be regarded as a site for construction warehouses, material warehouses, annexed building sites, and parking lots in nuclear facilities. If the selection of preliminary sites was made in the draft, then it is necessary to select the influencing factors for these sites. The site of the treatment facility shall be suitable for the transfer of the waste from the place where the dismantling waste is generated to the treatment facility. In addition, in order for construction to take place, interference with existing facilities and safety should not be affected, and it should not be complicated or narrow during construction. Considering the foundation and accessibility, the construction of the facility should be economical, and the final dismantling of the facility should also be easy. In order to determine one final preferred plan with three hypothetical locations and five influencing factors, there will be complex aspects and it will be difficult to maintain consistency as the evaluation between each factor progresses. Therefore, we introduce the Analytic Hierarchical Process (AHP) methodology to perform pairwise comparison between factors to derive an optimal plan. One optimal plan was selected by evaluating the three virtual places and five factors of consideration presented in this study. Given the complexity and consistency of multiple influencing factors present and prioritizing them, AHP tools help users make decisions easier by providing simple and useful features. Above all, it will be most important to secure sufficient grounds for pairwise comparison between influencing factors and conduct an evaluation based on this.
The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. In addition, according to the level of radioactivity, it can be divided into high level, intermediate level, low level, and clearance level waste. In the case of solid radioactive waste, it is necessary to secure disposal suitability in order to deliver it to a disposal facility, so safe and efficient treatment of a large amount of radioactive waste generated during decommissioning is one of the most important issues. For the treatment of radioactive waste generated during decommissioning, technologies in various fields such as cutting, decontamination, melting, measurement, and packaging are required. Therefore, this study intends to present and application plan for decommissioning domestic nuclear power plants through overseas case studies for the treatment of radioactive waste expected to occur during nuclear power plant decommissioning.
Domestic nuclear power plants developed the scaling factors for the radioactive waste generated from 2004 to 2008 for the first time. Afterwards, the effectiveness of continuous application of the scaling factors have been evaluated for newly generated radioactive waste over the past two years. It was confirmed that most of the initially developed scale factors were effective within a factor of 10 principle, which is an acceptable range. The scaling factors were updated using the analysis data base from 2004 to 2016. A scaling factor refers to the calculated abundance ratio between Key (Easy-to- Measure) and DTM (Difficult-to-Measure) nuclide at the time of generation of radioactive waste based on the source term in the reactor of an operating nuclear power plant. The effectiveness of continuous application of scaling factors can be evaluated at regular intervals regardless of operation status or when there are events that change scaling factors during nuclear power plant operation, such as zinc injection, large-scale facility replacement, and long-term shutdown etc. Even in the case of a permanently shut down nuclear power plant in which fuel is withdrawn from the reactor and generation of new nuclides by nuclear fission and radiation has stopped, periodic verification is conducted to confirm whether the scaling factor developed before permanent shutdown can be effectively applied to the radioactive waste generated after permanent shutdown. However, depending on the nuclear power plant decommissioning strategy or conditions, the period of permanent shutdown prior to decommissioning can be very long, so preparations are needed to ensure the appropriateness of scaling factor operation. In the case of domestic nuclear power plants, Kori Unit 1, a light water reactor, was permanently shut down in June 2017, and as a heavy water reactor nuclear power plant, the permanent shutdown of Wolseong Unit 1 was finally decided in December 2019 after twists and turns including large-scale facility replacement and long-term shutdown. In this paper, we have predicted when the scaling factors will change significantly due to radioactive decay and the difference in halflife between the Key and DTM nuclides over time after permanent shutdown. We also have tried to find appropriate countermeasures for the operation of scaling factors during permanent shutdown period, such as updating scaling factors or applying correction factors.
In Korea, many characteristic component facilities and technologies in general experimental areas for non-radiative materials are owned by industry-academia research. Still, no characteristic analysis test technology has been developed for large, intermediate-level decommissioning waste emitted by neutron irradiation. Since Korea plans to decommission nuclear power plants in 2027, securing analysis technology for intermediate-level decommissioning waste is essential. Accordingly, the Korea Research Institute of Decommissioning (KRID) plans to secure an infrastructure (hot cell) to analyze the characteristics of intermediate-level dismantled waste. Afterward, we intend to stably dispose of the waste generated while decommissioning the current Gori Unit 1/Wolseong Unit 1 using the intermediatelevel dedicated hot cell. It aims to secure high-dose/high-radiation decommissioning waste handling technology through intermediate-level hot cells for the first time in Korea, supports domestic nucleardecommissioning projects, and secure and validate procedures related to material characteristics and nuclide analysis of intermediate-level waste. Furthermore, research on intermediate-level radioactive materials is expected to be carried out in cooperation with schools and research institutes.
Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.
Radioactive waste generated in large quantities from NPP decommissioning has various physicochemical and radiological characteristics, and therefore treatment technologies suitable for those characteristics should be developed. Radioactively contaminated concrete waste is one of major decommissioning wastes. The disposal cost of radioactive concrete waste is considerable portion for the total budget of NPP decommissioning. In this study, we developed an integrated technology with thermomechanical and chemical methods for volume reduction of concrete waste and stabilization of secondary waste. The unit devices for the treatment process were also studied at bench-scale tests. The volume of radioactive concrete waste was effectively reduced by separating clean aggregate from the concrete. The separated aggregate satisfied the clearance criteria in the test using radionuclides. The treatment of secondary waste from the chemical separation step was optimally designed, and the stabilization method was found for the waste form to meet the final disposal criteria in the repository site. The final volume reduction rates of 56.4~75.4% were possible according to the application scenario of our processes under simulated conditions. The commercial-scale system designs for the thermomechanical and chemical processes were completed. Also, it was found that the disposal cost for the contaminated concrete waste at domestic NPP could be reduced by more than 20 billion won per each unit. Therefore, it is expected that the application of this technology will improve the utilization of the radioactive waste disposal space and significantly reduce the waste disposal cost.
Decommissioning waste is generated at all stages during the decommissioning of nuclear facilities, and various types of radioactive waste are generated in large quantities within a short period. Concrete is a major building material for nuclear facilities. It is mixed with aggregate, sand, and cement with water by the relevant mixing ratio and dried for a certain period. Currently, the proposed treatment method for volume reduction of radioactive concrete waste was involved thermomechanical and chemical treatment sequentially. The aggregate as non-radioactive materials is separated from cement components as contaminated sources of radionuclides. However, to commercialize the process established in the laboratory, it is necessary to evaluate the scale-up potential by using the unit equipment. In this study, bench-scale testing was performed to evaluate the scale-up properties of the thermomechanical and chemical treatment process, which consisted of three stages (1: Thermomechanical treatment, 2: Chemical treatment, 3: Wastewater treatment). In the first stage, lab, bench, and pilot scale thermomechanical tests were performed to evaluate the treated coarse aggregate and fines. In the second stage, the fine particles generated by the thermomechanical treatment process, were chemically treated using dissolution equipment, after then the removal efficiency and residual of cement in the small aggregate was compared with laboratory results. The final stage, the secondary wastewater containing contaminant nuclides was treated, and the contaminant nuclides could be removed by chemical precipitation method in the scale-up reactors. Furthermore, an additional study was required on the solid-liquid separation, which connected each part of the equipment. It was conducted to optimize the separation method for the characteristics of the particles to be separated and the purpose of separation. Therefore, it is expected that the basic engineering data for commercialization was collected by this study.
To transport radioactive waste generated during the decommissioning of Kori Unit 1, transport containers of various sizes are being developed. Since these radioactive decommissioning waste transport containers are larger than the specifications of the existing IP-2 type transport containers, which are for operational radioactive waste, design of the CHEONG-JEONG-NURI needs to be changed when transporting them to disposal facility using the CHEONG-JEONG-NURI, which carries operational radioactive waste. In this study, design changes of the CHEONG-JEONG-NURI, cargo hold modification plan for efficient loading of radioactive decommissioning waste transport containers and radioactive decommissioning waste container loading arrangement (plan) were evaluated during the design life period (year 2034). First, as only the IP-2 type transport container with a weight of 7.5 tons and size of 1.6 m (W) × 3.4 m (L) × 1.2m (H) can be loaded in the cargo hold, if only the decommissioning radioactive waste containers are to be loaded and transported, cargo hold needs to be reinforced. Second, when both the radioactive decommissioning waste transport container of the same size as the current operating radioactive waste transport container, and the radioactive decommissioning waste transport container of the same size as the ISO-type transport container are to be loaded in the cargo hold of the CHEONG-JEONG-NURI and transported, the overall design changes (cargo hold size and load reinforcement) are required. Third, since the safe working load of the CHEONG-JEONG-NURI crane is 12.5-tons, it shall be replaced with a ship crane of 35-tons or more to handle the decommissioning radioactive waste container smoothly, or a gantry crane used in general port facilities shall be installed. When replacing with a ship crane of 35-tons or more, ship buoyancy, ship stability, and ship structural safety shall be considered. The possibility of moving in all 4 directions for smooth operation, and the possibility of lifting the transport container to a position higher than the height of the CHEONG -JEONG-NURI shall be considered. Loading and transporting all decommissioning radioactive waste containers, which are the same size as IP-2 and ISO-type transport containers, in the cargo hold of the CHEONG-JEONG-NURI is uneconomical due to the need for overall design changes (cargo size and load reinforcement, etc.). Also, delay in delivery of the operation wastes is expected due to a long-term design change period. Therefore, it is considered reasonable to load and transport only the decommissioning radioactive waste transport container, which is the same size as the IP-2 transport container, in the cargo hold.
The design life of the radioactive waste carrier, the CHEONG JEONG NURI, is in the year 2034, when the decommissioning of Kori Unit 1 is expected. As only IP-2 type transport containers (7.5- tons, 1.6 m (W) × 3.4 m (L) × 1.2 m (H)) can be loaded onto the CHEONG-JEONG-NURI, the radioactive decommissioning waste (RDW) transport containers neither of 35-tons maximum weight nor ISO type can be accommodated. Accordingly, either a new vessel (NV) to replace the CHEONGJEONG- NURI or a change in the loading dock design of the CHEONG-JEONG-NURI is required. In this study, the necessity of building a NV capable of accommodating the issued containers above is analyzed focusing, (1) the estimated building and operating costs of the NV, and (2) the economic feasibility of the NV ‘s RDW transportation scenarios. Among bulk carriers, the CHEONG-JEONG-NURI was designed as handy-size ship type. It is operated reflecting various design requirements to satisfy the domestic/international legal requirements. To estimate the cost of the NV, the same vessel type and design criteria of the CHEONG-JEONGNURI were considered. The shipping price information of the Korea Ocean Business Corporation, as of August 2022, the building cost of bulk carrier Handysize (building NV type) is about USD 30 million. Considering domestic/overseas variables, such as future labor costs, international inflation, interest rate hike, etc., the building costs are expected to continuously rise. Furthermore, vessel operation costs of crew labor, vessel, fuel, and insurance are incurred separately. Due to the increase in oil price, and wages of special positions, such as general seafarers and radiation safety managers, the NV’s operating cost is expected to be about KRW 3.8 billion every year, which is about KRW 1.1 billion higher than that of the CHEONG-JEONG-NURI. The expected total cost of building and operating the NV is about KRW 65 billion. Assuming the repayment period of the NV building cost is the same as that of the CHEONG-JEONG-NURI building cost reimbursement agency and analyzing the economic feasibility of the transport scenario of the NV built by adding up about KRW 3.8 billion of the operating cost, cost about KRW 880 million per voyage of the NV built is expected, which being KRW 620 million more than the current cost (KRW 260 million) per trip of the CHEONG-JEONG-NURI. Therefore, transporting the RDW to the disposal facility through sustainable use of the CHEONGJEONG- NURI (considering design life extension and design change) is evaluated as more appropriate than building NV.
In operating or permanently shut down nuclear power plants which were built between 1970s and 1990s, asbestos was widely used for ceiling materials, wall materials, and gaskets. Furthermore, it was mainly treated as a heat-resistant material like insulation. In Kori Unit 1, radioactive asbestos was replaced or removed through maintenance and repair in the containment building during the operation period of about 40 years, but radioactive asbestos still remains that need to be partially dismantled. Generally, it is more difficult to handle because it belongs to two different waste categories, radioactive waste and hazardous waste. In addition, the risk increases further due to radioactivity with the asbestos hazards itself. Therefore, it is very important to accurately determine the amount of radioactive asbestos waste and to evaluate the treatment method and disposal reduction rate before the decommissioning is started. According to the Korean Waste Management Act, three methods are recommended for the asbestos (hazardous waste) treatment: landfill, solidification, and high-temperature melting. Landfill is commonly used in Korea and the United States while high-temperature melting and solidification are additionally recommended only in Korea. Considering the situation in Korea, landfill is not appropriate due to the limitations of landfill capacity and potential risks (hazards still remain). Therefore, the other two methods can be considered sufficiently in terms of safety, detoxification, and reduction rate. This paper evaluates the amount of radioactive asbestos waste at Kori Unit 1 based on the actual asbestos building material data (as of February 2022) of the Asbestos Management Comprehensive Information Network. Vitrification is considered as a sufficient alternative for treating radioactive asbestos waste. And, it is checked whether the vitrified waste through the high-temperature melting method, plasma torch, meets the requirements such as detoxification, compressive strength and leachability for storage and disposal stability. It is expected to be useful to prepare a radioactive mixed waste management standard and to reduce the disposal cost through the reduction of final waste.