This study proposes a surrogate model framework that integrates finite element analysis and deep learning to rapidly estimate equivalent material properties of patterned sheets. Conventional homogenization methods can only be applied after the pattern geometry has been finalized, requiring additional modeling and simulation. In contrast, the proposed approach establishes a surrogate model in advance, enabling the immediate estimation of equivalent material properties once the pattern geometry is defined. A dataset of 5,000 cases was generated using simulations, and Bayesian hyperparameter optimization was applied to improve model performance. The surrogate model achieved R² values above 0.99 for all target properties, confirming high internal consistency. Experimental validation with patterned STS304 specimens yielded meaningful results, with all errors remaining within 15%, which demonstrates the reliability of the proposed surrogate model despite minor deviations caused by fabrication imperfections and limited training data. Despite these limitations, the proposed system enables instant estimation of equivalent properties from pattern geometries, offering significant reduction in computational cost and design time. This approach enhances design reliability and provides a practical tool for the application of patterned materials in industrial engineering.
최근 고도화된 딥러닝 모형을 이용하여 하천 수질에 영향을 줄 수 있는 과도한 조류(algae) 발생을 예측하는 연구에 대한 관심이 지속되고 있으며, 모형의 구축에 사용되는 현장 측정 자료의 특성상 다양한 이상치를 포함할 수 있어 데이터의 이상치 관리 필요성이 높아지고 있다. 본 연구에서는 현장 자료의 이상치가 딥러닝 모형의 성능에 미치는 영향을 분석하기 위해 딥러닝 Long Short-Term Memory(LSTM) 모형을 이용하여 하천 조류 발생을 정량적으로 평가하는 지표인 클로로필-a를 예측하는 모형을 구축하였으며, 10%의 이상치를 포함한 자료와 이상치가 포함되지 않은 원본 자료로 학습된 모형의 성능을 비교하였다. 또한 딥러닝 기반 이상치 탐지 알고리즘인 Autoencoder(AE)를 이용하여 이상치를 제거한 후 모형의 성능에 미치는 영향을 비교하였다. 분석 결과 이상치를 포함하지 않은 자료로 학습된 Base 모형과 10%의 이상치를 포함한 자료로 학습된 모형의 Nash-Sutcliffe efficiency(NSE)가 각각 0.882 및 0.858로 나타나 이상치가 모형의 성능을 저하시킬 수 있음을 확인하였다. 한편 AE를 이용하여 이상치를 다양한 비율로(5–20%) 제거한 자료로 학습된 모형의 성능을 분석한 결과 NSE가 0.883–0.896으로 이상치의 제거에 따라 모형의 성능이 Base 모형과 유사한 수준으로 개선되는 것으로 나타났다. 본 연구에서는 이상치가 딥러닝 모형에 미치는 영향을 분석하고 이상치 탐지 모형의 활용에 따른 조류 발생 예측 딥러닝 모형의 성능 향상이 가능함을 확인하였다.
Background: The increasing demand for real-time professional fitness coaching has led to a need for accurate exercise posture recognition using artificial intelligence. Objectives: To compare the performance of Feedforward Neural Network (FNN) and Stacked Long Short-Term Memory (LSTM) models in classifying fitness posture images using detailed joint coordinate labeling. Design: Comparative analysis of machine learning models using a labeled dataset of fitness posture images. Methods: A dataset from AI-hub containing images and data of 41 exercises was used. Five exercises were selected and processed using a custom program. Data was converted from JSON to CSV format, augmented with joint condition information, and analyzed using Google Colab. Results: The best FNN model achieved a training error of 1.21% and test error of 9.08%. The Stacked LSTM model demonstrated superior performance with a training error of 1.05% and test error of 6.09%. Conclusion: Both FNN and Stacked LSTM models effectively classified sequential fitness images, with Stacked LSTM showing superior performance. This indicates the potential of Stacked LSTM models for accurate fitness posture classification in real-time coaching scenarios.
The purpose of this study was to develop a more accurate model for predicting the in-situ compressive strength of concrete pavements using Internet-of-Things (IoT)-based sensors and deep-learning techniques. This study aimed to overcome the limitations of traditional methods by accounting for various environmental conditions. Comprehensive environmental and hydration data were collected using IoT sensors to capture variables such as temperature, humidity, wind speed, and curing time. Data preprocessing included the removal of outliers and selection of relevant variables. Various modeling techniques, including regression analysis, classification and regression tree (CART), and artificial neural network (ANN), were applied to predict the heat of hydration and early compressive strength of concrete. The models were evaluated using metrics such as mean absolute error (MAE) to determine their effectiveness. The ANN model demonstrated superior performance, achieving a high prediction accuracy for early-age concrete strength, with an MAE of 0.297 and a predictive accuracy of 99.8%. For heat-of-hydration temperature prediction, the ANN model also outperformed the regression and CART models, exhibiting a lower MAE of 1.395. The analysis highlighted the significant impacts of temperature and curing time on the hydration process and strength development. This study confirmed that AI-based models, particularly ANNs, are highly effective in predicting early-age concrete strength and hydration temperature under varying environmental conditions. The ability of an ANN model to handle non-linear relationships and complex interactions among variables makes it a promising tool for real-time quality control in construction. Future research should explore the integration of additional factors and long-term strength predictions to further enhance the model accuracy.
기후 변화에 의해 해수면 온도 상승, 태풍의 최고 강도 북상, 태풍 강도 증가가 나타나고 있으며, 미래의 태풍 강도 변화가 더 심화될 것으로 예상하고 있다. 본 논문에서는 기후 변화 시나리오에 의해서 발생할 수 있는 한반도 부근의 태풍 강도를 예측하기 위하여 딥러닝 기반 태풍 강도 예측 모델을 개발하였다. 기후 예측정보를 이용하여 미래 기후 변화 환경장 변화에 따른 태풍의 강도를 예측할 수 있도록 과거 환경장을 학습 자료로 사용하였다. 학습자료는 1980년에서 2022년까지의 태풍 발생 빈도가 높은 6~10월의 기상 및 해양 재분 석 월평균 자료와 Best Track 태풍 241개를 입력자료로 사용하였다. 환경장 변화에 따른 태풍 강도 예측을 위해 자료의 공간적인 특징과 시간적인 특징을 함께 고려하는 딥러닝 모델인 ConvLSTM 기반으로 모델을 개발하였다. 태풍 트랙 시퀀스의 각 이동 경로에 대한 월평균 환경장 자료를 모델에 학습하여 태풍의 중심 기압을 예측하였다. 태풍의 공간적 특성을 반영할 수 있도록 범위를 설정하여 입력자료로 학습하였으며, 5°⨉ 5°의 범위일 때 가장 좋은 결과를 보였다. 몬테카를로 방법을 이용한 민감도 실험을 통해 모델 예측에 가장 큰 영향을 미치는 변수는 SST로 확인되었다.
본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥 러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경 망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변 수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이 터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였 으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.
In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users’ safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.
본 연구에서는 진해만의 DO 농도 재현을 목표로 LSTM 모형의 최적 매개변수 조건과 예측변수를 선별하기 위한 Case study를 진행하였다. 모형 매개변수 Case study 결과, 가장 적은 Hidden node와 Epoch인 Hidden node=10, Epoch=100에서 가장 낮은 정확도를 보였다. 이는 모형이 과소적합(Underfitting) 상태인 것으로 판단된다. Hidden node=80, Epoch=1200에서 R2 값은 0.99로 가장 높은 정확도를 보였다. 예 측변수 Case study 결과, 1개의 환경변수만을 예측변수로 사용한 Step 1에서 수온을 예측변수로 했을 때 저층 DO 농도 재현의 R2 값은 0.81 로 가장 높은 정확도를 보였다. 이후 2개의 환경변수를 사용한 Step 2에서는 수온과 SiO2를 예측변수로 했을 때 R2 값은 0.92로 수온만 사 용했을 때보다 정확도가 급격히 증가하였다. 이는 저층 DO 농도와 SiO2 농도간의 높은 상관성(=0.70)에 기인한 것으로 판단된다. 상기 결과로부터 진해만의 DO 농도 재현에 적합한 LSTM 모형의 매개변수와 예측변수를 찾을 수 있었다.