검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The increasing demand for real-time professional fitness coaching has led to a need for accurate exercise posture recognition using artificial intelligence. Objectives: To compare the performance of Feedforward Neural Network (FNN) and Stacked Long Short-Term Memory (LSTM) models in classifying fitness posture images using detailed joint coordinate labeling. Design: Comparative analysis of machine learning models using a labeled dataset of fitness posture images. Methods: A dataset from AI-hub containing images and data of 41 exercises was used. Five exercises were selected and processed using a custom program. Data was converted from JSON to CSV format, augmented with joint condition information, and analyzed using Google Colab. Results: The best FNN model achieved a training error of 1.21% and test error of 9.08%. The Stacked LSTM model demonstrated superior performance with a training error of 1.05% and test error of 6.09%. Conclusion: Both FNN and Stacked LSTM models effectively classified sequential fitness images, with Stacked LSTM showing superior performance. This indicates the potential of Stacked LSTM models for accurate fitness posture classification in real-time coaching scenarios.
        4,500원
        3.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to develop a more accurate model for predicting the in-situ compressive strength of concrete pavements using Internet-of-Things (IoT)-based sensors and deep-learning techniques. This study aimed to overcome the limitations of traditional methods by accounting for various environmental conditions. Comprehensive environmental and hydration data were collected using IoT sensors to capture variables such as temperature, humidity, wind speed, and curing time. Data preprocessing included the removal of outliers and selection of relevant variables. Various modeling techniques, including regression analysis, classification and regression tree (CART), and artificial neural network (ANN), were applied to predict the heat of hydration and early compressive strength of concrete. The models were evaluated using metrics such as mean absolute error (MAE) to determine their effectiveness. The ANN model demonstrated superior performance, achieving a high prediction accuracy for early-age concrete strength, with an MAE of 0.297 and a predictive accuracy of 99.8%. For heat-of-hydration temperature prediction, the ANN model also outperformed the regression and CART models, exhibiting a lower MAE of 1.395. The analysis highlighted the significant impacts of temperature and curing time on the hydration process and strength development. This study confirmed that AI-based models, particularly ANNs, are highly effective in predicting early-age concrete strength and hydration temperature under varying environmental conditions. The ability of an ANN model to handle non-linear relationships and complex interactions among variables makes it a promising tool for real-time quality control in construction. Future research should explore the integration of additional factors and long-term strength predictions to further enhance the model accuracy.
        4,000원
        4.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후 변화에 의해 해수면 온도 상승, 태풍의 최고 강도 북상, 태풍 강도 증가가 나타나고 있으며, 미래의 태풍 강도 변화가 더 심화될 것으로 예상하고 있다. 본 논문에서는 기후 변화 시나리오에 의해서 발생할 수 있는 한반도 부근의 태풍 강도를 예측하기 위하여 딥러닝 기반 태풍 강도 예측 모델을 개발하였다. 기후 예측정보를 이용하여 미래 기후 변화 환경장 변화에 따른 태풍의 강도를 예측할 수 있도록 과거 환경장을 학습 자료로 사용하였다. 학습자료는 1980년에서 2022년까지의 태풍 발생 빈도가 높은 6~10월의 기상 및 해양 재분 석 월평균 자료와 Best Track 태풍 241개를 입력자료로 사용하였다. 환경장 변화에 따른 태풍 강도 예측을 위해 자료의 공간적인 특징과 시간적인 특징을 함께 고려하는 딥러닝 모델인 ConvLSTM 기반으로 모델을 개발하였다. 태풍 트랙 시퀀스의 각 이동 경로에 대한 월평균 환경장 자료를 모델에 학습하여 태풍의 중심 기압을 예측하였다. 태풍의 공간적 특성을 반영할 수 있도록 범위를 설정하여 입력자료로 학습하였으며, 5°⨉ 5°의 범위일 때 가장 좋은 결과를 보였다. 몬테카를로 방법을 이용한 민감도 실험을 통해 모델 예측에 가장 큰 영향을 미치는 변수는 SST로 확인되었다.
        4,200원
        5.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥 러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경 망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변 수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이 터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였 으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.
        4,000원
        6.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        9.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
        4,000원
        12.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users’ safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.
        4,000원
        14.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 진해만의 DO 농도 재현을 목표로 LSTM 모형의 최적 매개변수 조건과 예측변수를 선별하기 위한 Case study를 진행하였다. 모형 매개변수 Case study 결과, 가장 적은 Hidden node와 Epoch인 Hidden node=10, Epoch=100에서 가장 낮은 정확도를 보였다. 이는 모형이 과소적합(Underfitting) 상태인 것으로 판단된다. Hidden node=80, Epoch=1200에서 R2 값은 0.99로 가장 높은 정확도를 보였다. 예 측변수 Case study 결과, 1개의 환경변수만을 예측변수로 사용한 Step 1에서 수온을 예측변수로 했을 때 저층 DO 농도 재현의 R2 값은 0.81 로 가장 높은 정확도를 보였다. 이후 2개의 환경변수를 사용한 Step 2에서는 수온과 SiO2를 예측변수로 했을 때 R2 값은 0.92로 수온만 사 용했을 때보다 정확도가 급격히 증가하였다. 이는 저층 DO 농도와 SiO2 농도간의 높은 상관성(=0.70)에 기인한 것으로 판단된다. 상기 결과로부터 진해만의 DO 농도 재현에 적합한 LSTM 모형의 매개변수와 예측변수를 찾을 수 있었다.
        4,000원
        16.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수 (CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실 제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성 능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.
        4,000원
        18.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning models, which imitate the function of human brain, have drawn attention from many engineering fields (mechanical, agricultural, and computer engineering etc). The major advantages of deep learning in engineering fields can be summarized by objects detection, classification, and time-series prediction. As well, it has been applied into environmental science and engineering fields. Here, we compiled our previous attempts to apply deep learning models in water-environment field and presented the future opportunities.
        4,500원
        20.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        증발산은 순복사 에너지를 사용하여 잠열의 형태로 수증기를 대기 중으로 수송함으로써 지구에너지 순환에 있어 중요한 요소 중의 하나이며, 증발산량은 지표유출의 두 배 정도로서 지구 물 수지에서 차지하는 비중이 매우 크다. 증발산의 지상관측은 지점에 국한되기 때문에 공간연속면 상에서의 증발산량 산출을 위하여 격자형 기상자료와 위성자료를 이용한 모델링이 오랫동안 이루어져왔다. PM(Penman-Monteith) 방정식에 기초한 METRIC(Mapping Evapotranspiration with Internalized Calibration) 모델이나 PT(Priestley-Taylor) 방정식을 이용한 MS-PT(Modified Satellite-based Priestley-Taylor) 모델 등이 주로 사용되어 왔으나, 또 하나의 대안으로서 본 연구에서는 최근 부각되고 있는 딥러닝 기법인 DNN(deep neural network)을 이용한 증발산 모델링을 수행하였다. 은닉층 구조, 손실함수, 옵티마이저, 활성화함수, L1/L2 정규화, 드롭아웃 비율 등의 최적화 과정을 거쳐서 수립한 DNN 모델은 RMSE = 0.326mm/day, 상관계수 = 0.975의 매우 양호한 정확도를 나타내었다. 이는 DNN 최적화와 함께, 국지예보모델과 위성자료로부터 증발산 기작에 관여하는 인자들을 선택하여 입력자료로 적절히 사용하였기 때문이기도 하다. 향후과제로서 훈련자료의 종류와 양을 증가시켜서 DNN 모델을 보다 정교화하는 것은 반드시 필요하다고 사료된다.
        4,300원
        1 2