가상의 심지층 처분 부지에서 이루어진 지하수 유동 모의 결과를 이용하여 처분 심도의 지하수 유량 분포를 분석하고 그 결 과를 처분 안전성 평가에 이용할 수 있는 방안을 제시하였다. 처분 심도의 지하수 유동량은 가상의 처분 부지를 대상으로 한 광역 및 국지적 지하수 유동 모의 결과의 지하수두 분포를 이용하여 분석하였다. 지하수 유동량 분포를 이용하여 처분공 위 치의 지하수 유동량을 분석하고 최대값을 기준으로 지하수 유동량을 표준화하여 처분공에서의 처분 용기 파손 가능성을 확 률적으로 도시하였다. 확률적으로 제시된 처분 용기의 파손 가능성을 이용하여, 처분 용기로부터 누출이 일어날 것으로 가 정된 위치에서 지표 환경으로 이동하는 방사성 핵종의 이동량에 대한 확률론적 기대값을 계산하여 결정론적으로 평가된 이 전 연구 결과와 비교하였다. 이런 평가 방법은 현장 조건을 더욱 많이 반영할 수 있는 안전성 평가 방안 구축에 기여할 수 있 을 것으로 생각된다.
SiO2 기판과 dimethylethylamine alane(DMEAA)을 반응소스로 하여 알루미늄을 증착시켜 증착전 전처리 가스 종류와 수소 플라즈마 처리에 따른 증착속도의 차이와 미세구조에 대하여 연구하였다. TiN기판에 증착된 알루미늄의 증착속도는 증착전 수소 가스에 의한 전처리한 경우 아르곤이나 헬륨에 의한 전처리에 비해 빠른 증착속도를 나타내었다. 이르곤 플라즈마 전처리나 플라즈마 전처리 하지 않고 SiO2기판에 알루미늄을 증착하였을 경우에 비해 수소 플라즈마 전처리에 의해 알루미튬증착시 잠복기(incubation time)가 감소하였으며 치밀한 미세조직을 얻을 수 있었다.
본 연구에서는 TIMA를 전구체로 하는 수직형 MOCVD 반응기를 대상으로 수학적 모델을 세우고 컴퓨터에 의한 수치모사를 수행하여 반응기 설계 변수 및 공정조건이 AI의 증착속도와 증착두께 분포에 미치는 영향을 알아보았다. 수학적 모델은 수직형 반응기를 축대칭으로 보아 2차원으로 수립하였으며 반응기내의 운동량전달, 열전달, 물질전달을 포함한다. 이 수학적 모델의 지배 방정식들에 대하여 Galerkin 유한요소법을 적용하여 수치적으로 반응기 내의 유체 흐름 구조, 온도분포와 반응물의 농도 분포를 구하였다. 수치모사 결과 AI의 증착속도는 반응기 압력이 0.47torr, 기판온도가 250˚C, 유량이 7.5sccm일 경우, 190-230Å/min로 나타났다.
플라즈마 CVD(PECVFD)장치로 금속유기물인 Diethylzinc와 N2O를 합성하여 300˚C이하의 낮은 기판 온도에서 ZnO 박막을 증착하여, 증착변수가 박막의 증착속도 및 결정구조에 미치는 영향을 알아 보았다. 기판 온도 150˚C에서부터 이미 결정화된 ZnO 박막의 증착이 가능했으며, 200˚C이상에서 X-ray rocking curve분석결과, 표준편차값(δ)이 6˚ 미만의 c축 배향성이 뛰어난 ZnO박막이 유리 기판위에 증착되었다. 기판온도오 인가된 rf전력에 의한 증착속도의 변화 양상은 매우 다양하였으며, 특히 결정화에 따른 증착속도 변화의 전이점이 관찰되었다. 200 W와 250W의 rf 전력에서 증착된 박막의 경우 활성화 에너지는 각각 3.1 KJ/mol과 1.9 KJ/mol이었다.