검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1,4-Dioxane is an EPA priority pollutant often found in contaminated ground waters and industrial effluents. Conventional water treatment techniques are limited to decompose this compound effectively. Therefore, an advanced oxidation process system (AOP) was used for the degradation of 1,4-dioxane. This research investigates the effect of adding oxidants, such as ozone, air, and H2O2 during the UV irradiation of 1,4-dioxane solution. In order to analyze 1,4-dioxane, a modified 8270 method, which is an improved method of U.S EPA 8720, was used. Degradation efficiencies of 1,4-dioxane by only UV irradiation at various temperatures were not significant. However, The addition of oxidants and air bubbling in the UV irradiation system for 1,4-dioxane decomposition showed the higher 1,4-dioxane degradation rate. And, during AOP treatment the tendency of TOC changes was similar to that of 1,4-dioxane decomposition rate.
        4,000원
        2.
        1996.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In acid-catalyzed acetal cyclization of long aliphatic aldehydes(R=n-C7H15 ; n-C9H19 ; n-C11H23) with 1,1,1-tris(hydroxymethyl)propane, 2-alkyl-5-hydroxymethyl-5-ethyl-1,3-dioxanes were obtained. The final products, sodium 2-alkyl-5-(sulfonatedpropylethermethyl)-5-ethyl-1,3-propanesultion in the presence of sodium hydride. These compounds were a new group of destructible surfactants which were readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved some surface properties such as Krafft point(Kp), critical micelle concentration(cmc), surface tension of aqueous solutions near cmc(γmin), foaming power, emulsion power and hydrolysis properties were determined. The destructible surfactants containing 1,3-dioxane ring were synthesized to about 85±5.5% yield. The cmc values of the compounds by ring method were assumed to 0.5~5.0×10-3mol/L range and surface tensions at cmc were 29.5~33.0dyne/cm respectively at 25℃. The foaming power and foam stability were 170~230mm and 52~135mm respectively at 1×10-2mol/L, foam was occurred rarely below 1×10-3mol/L. The emulsion property of liquid paraffin was better than that of soybean oil. For hydrolysis property with ph and time, these compounds were decomposed within about 200minutes at ph1~2. Hopefully these compounds are expected to be a good O/W emulsifier that have decomposability in acid and may be used in the process which do not need foaming.
        4,200원
        3.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dioxane solvent. XRD and SEM analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads prepared by dioxane solvent was about 2 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The optimum pH was pH 10. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir model was 24.25 mg/g. The thermodynamic parameters such as △H°, △S° and △G° were evaluated. The calculated ΔG° was between −6.16 and −4.14 kJ/mol (below zero), indicating the spontaneous nature of Li+ adsorption on PVC-LMO beads. Also, the results showed that PVC-LMO beads prepared in this study could be used for the removal of lithium ions from seawater containing coexisting ions such as Na+, K+, Mg2+ and Ca2+.
        4.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        Advanced oxidation processes involving O3/H2O2 and O3/catalyst were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane. Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in O3/H2O2 process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in O3/catalyst column. 1,4-dioxane concentration was reduced steadily with reaction time in O3/H2O2 oxidation process, however, in case of O3/catalyst process, about 50~75% of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of O3/catalyst was also higher than that of O3/H2O2 process. TOC and CODCr were analyzed in order to examine the oxidation characteristics with O3/H2O2 and O3/catalyst process. The results of CODCr removal efficiency and ΔTOC/ΔThOC ratio in O3/catalyst process gave that this process could more proceed the oxidation reaction than O3/H2O2 oxidation process. Therefore, it was considered that O3/catalyst advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.