This study investigated variables for improving adhesive strength using laser surface treatment when bonding dissimilar materials using adhesives. adhesive strength analysis was performed for CFRP and Al6061 by laser irradiation intensity, and surface roughness was measured to analyze the related results. In the case of CFRP, the adhesive strength was good when the surface was not treated. In the case of Al6061, the adhesive strength was 25 MPa when the surface was treated with 20W, the maximum output of the laser surface treatment equipment, and the adhesive strength was improved by 125% compared to the untreated specimen. In addition, by measuring the surface roughness in the experiment, it was confirmed that the higher the surface roughness, the better the adhesive strength.
In this study, we have prepared a Ti-6Al-4V/V/17-4 PH composite structure via a direct energy deposition process, and analyzed the interfaces using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The joint interfaces comprise two zones, one being a mixed zone in which V and 17-4PH are partially mixed and another being a fusion zone in the 17-4PH region which consists of Fe+FeV. It is observed that the power of the laser used in the deposition process affects the thickness of the mixed zone. When a 210 W laser is used, the thickness of the mixed zone is wider than that obtained using a 150 W laser, and the interface resembles a serrated shape. Moreover, irrespective of the laser power used, the expected phase is found to be absent in the V/17-4 PH stainless steel joint; however, many VN precipitates are observed.
Adhensively bonded joints in dissimilar materials have been widely applied in various engineering fields such as automobiles, space vehicle, semiconductor, vessel. To establish a fracture criterion and a reasonable strength evaluation method on adhensively interfaces in dissimilar materials, it is necessary to assess fracture parameters with various bonding conditions. In this paper, through stress analysis by using the 2-dimensional elastic boundary element method(BEM), the stress singularity factors on adhensively bonded joint in dissimilar materials were investigated quantitatively, and suggested the strength evaluation method by using fracture parameters
Friction welding in dissimilar materials is widely applied in various engineering fields such as automobiles, rolling stocks, machine tools. Since interface edges of Friction-welded materials have stress singularity by differences of mechanical properties and temperature changes, it is necessary to assess stress singularity with the variation of flash shape and length. In this paper, the influences which the flashes created by friction welding concern to the stress singularity at interface edges are investigated. Through stress analysis by the BEM and static experiments, the influences were studied quantitatively, the stress singularity greatly depends on the shape of the flash and its size.
Recently, applied areas of nonferrous materials have been expanded in terms of efficiency of materials used and cost reduction. And, in accordance with compactness and accuracy of parts, the need of joining of dissimilar materials is raised. Accordingly, this study aimed at finding out the optimal welding current value(6.3~6.5kA) considering tensile strength, fracture test and welding residue after joining with various welding conditions by means of copper pipe(Φ7.0 × t0.5) and aluminium pipe(Φ7.0 × t0.7) using an eutectic diffusion bonding machine.
The spot weldability of dissimilar metal joints between stainless steels (AISI316) and interstitial free (IF) steels were investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensileshear strength, hardness, and microstructure. The fracture surface was investigated by using a Scanning Electron Microscopy (SEM). The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the STS316 sheet was larger due to the higher bulk-resistance. The microstructure of the fusion zone was fully martensite. In order to evaluate the microstructure further, dilution of stainless steels were calculated and imposed onto the Schaeffler diagram. The predicted microstructure from the Schaeffler diagram was martensite. In order to confirm the predicted microstructure, XRD measurements were carried out. The results showed that that initial weld nugget was composed of austenite and martensite.
Cu-brazed layer between the sintered-cam(Fe-5Cr-lMo-0.5P-2.5C, wt%) and seamless steelpipe(0.25-0.35C, 0.3-1.0 Mn, bal Fe, wt%) in the camshaft shows a columnar structure of -phase growing from the steel pipe. Liquid phase sintered 60Fe-40Cu alloys are carburized to simulate the brazing process giving rise to the columnar growth. Liquid film migrations and columnar growth of -grains are observed in the carburized regions. The -grains grow in the same direction as the C-diffusion. Fe-solubility in the liquid of carburized region is higher than in the uncarburized by about 0.3 at%. The columnar growth is driven by the gradient of the supersaturated Fe-solute in the liquid between two adjacent -grains.
서로 다른 두 재료의 접합면에 균열이 수직으로 위치하고 있을 때, 균열에서의 응력특이성차수는 두 재료의 재료특성치에 따라서 변화하게 된다. 이와 같은 균열문제를 해석하기 위하여 다영역경계요소법을 사용하였다. 균열을 포함하는 등매개 경계요소 중간절점의 위치를 적절히 이동하여 놓음으로써 변위에 대한 정확한 형상함수를 나타내었으며, 아울러 트랙션에 대해서도 정확한 보간차수를 나타내도록 시도하였다. 3절점 경계요소를 이용하여 수치해석을 수행하였으며, 이의 결과를 기존의 해석결과와 비교 검토하였다.