검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.
        4,000원
        2.
        2011.05 구독 인증기관·개인회원 무료
        Pine wood nematode (PWN), Bursaphelenchus xylophilus is associated with the pine wilt disease and transmitted by pine sawyer, Monochamus alternatus. Because pine sawyer has one-year life cycle, one natural infection of PWN is occurred a year. Therefore, artificial propagation method of PWN is needed to improve experiment associated with PWN. In this study, effect of diameter, paraffin sealing of twig and dosage on pine wood nematode reproduction in Japanese black pine, Pinus thunbergii. PWN reproduction was compared in twigs of P. thunbergii and P. densiflora. Numbers of reproduced PWN were higher with decreasing diameter of twig. Distance (5 and 10 cm) from inoculation site of PWN did not influence reproduction of PWN. Reproduced numbers of PWN were higher in the paraffin-sealing twig than non-sealing twig. Dosage of PWN influenced reproduction of PWN. Reproduction rate was the highest at the rate of 10 IJs (13.7 and 61.1-fold increasing in P. densiflora and P. thunbergii, respectively 30 days later) whereas lowest at the rate of 1000 Ijs (1.1 and 0.7-fold increasing in P. densiflora and P. thunbergii, respectively 30 days later). Numbers of reproduced PWN were more in P. thunbergii than P. densiflora.
        4.
        2013.04 서비스 종료(열람 제한)
        It is difficult to ensure enough workability and flowability in the fresh state of UHPC. In addition, it needs to enhance economic efficiency by reducing the usage of expensive constituents. Zirconia silica fume is an alternative material to replace the existing Silica fume. The objective of this study is to find out the effect of Zirconia silica fume dosage on viscosity of UHPC matrix
        5.
        1999.10 KCI 등재 서비스 종료(열람 제한)
        This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 ㎎/ℓ of Alum, 30 ㎎/ℓ of PAC and 10 ㎎/ℓ of PACS, respectively. The removal rate of algae in 30 ㎎/ℓ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turbidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of Mn2+ in water was high in the order of Alum, PAC and PACS treatment. And Fe2+ in water was not changed by treatment of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 ㎛ and particle numbers distributions below 10 ㎛ were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1∼-9.7 mV at optimum coagulants dosage for algae removal.
        6.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        This study was performed to determine the optimum coagulant dosing amount for effective treatment of raw water. The removal rate of turbidity and the variations of water qualities according to various dosage of coagulants such as Alum, PAC and PACS were investigated. The optimum coagulant dosing amount to make the lowest turbidity of water were 35㎎/ℓ of Alum, 30㎎/ℓ of PAC and l0㎎/ℓ of PACS in case of 5 NTU of raw water turbidity, and 30㎎/ℓ of Alum, 25㎎/ℓ of PAC and l0㎎/ℓ of PACS in case of 10 NTU of that, respectively. The removal rates of turbidity at 4 min. and 8 min. of settling time were 10 and 72% of Alum, 44 and 62% of PAC and 25 and 55% of PACS in case of 5 NTU, and 52 and 70% of Alum, 90 and 95% of PAC and 10 and 28% of PACS in case of 10 NTU, respectively. Judging from the settling capability of floc., the reaction time of floc. formation and removal efficiency of turbidity, PAC was evaluated as more effective coagulant than Alum and PACS. Also PAC was regarded as the most effective coagulant when the water supply was changed sharply and the fluctuation of the surface loading occured with wide and sharp in seettling basin. pH and alkalinity of the water were decreased with increasing coagulants dosage. But pH and alkalinity were not decreased below 5.8 which is the standard for drinking water quality, and l0㎎/ℓ which is the limit concentration of floc. breakage, respectively. Residual Al of the treated water was decreased with increasing coagulants dosage in case of 5 and 10NTU of raw water turbidity. KMnO_4 consumption of the water was decreased with increasing coagulants dosage. The reduction rate of KMnO_4 consumption at the optimum coagulants dosage were 39% of Alum, 18% of PAC and 11% of PACS in case of 5 NTU of raw water turbidity, and 42% of Alum, 27% of PAC and 36% of PACS in case of 10 NTU of that, respectively. Any relationship was not found between the removal rate of turbidity and KMnO_4 consumption. TOC of the water was a bit decreased with increasing coagulants dosage up to 30㎎/ℓ but not changed above 30㎎/ℓ of coagulants dosage. The degree of TOC reduction was increased in the order of Alum, PAC and PACS treatment. Zeta potential of the colloidal floc. at the optimum coagulants dosage was in the range of -20∼-15mV in case of 5 NTU of raw water turbidity and 0∼0.5mV in case of 10 NTU of that, respectively. Although the kinds and dosages of coagulants were different, zeta potential range were fixed under the conditions of the best coagulation efficiency.