검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Captive breeding and reintroduction are crucial strategies for conserving endangered species populations. However, fish raised in predator-free environments, show a lack of recognition of predationrelated stimuli such as chemical and visual signals. It is critical to recognize chemical signals from injured conspecifics, also known as alarm signals, and the order or shape of predators to indicate the spread of predation risk in the habitat. We conducted a laboratory experiment to determine and adjust the optimal exposure period to induce appropriate anti-predator behavior response to different types of stimuli (Chemical, Visual and Chemical+Visual) for the endangered species Microphysogobio rapidus. Our results demonstrate that predator avoidance behavior varies depending on the types of stimuli and the duration of predation risk exposure. First, the results showed captive-breed M. rapidus show lack of response against conspecific alarm signal (Chemical cue) before the predation risk exposure period and tend to increase response over predation risk exposure time. Second, response to predator (visual cue) tend to peak at 48 hours cumulative exposure, but show dramatic decrease after 72 hours cumulative exposure. Finally, response to the mixed cue (Chemical+visual) tend to peak prior to the predation risk exposure period and show reduced response during subsequent exposure periods. This experiment confirms the lack of responsiveness to conspecific alarm signals in captive-bred M. rapidus and the need for an optimal nature behavior enhancement program prior to release of endangered species. Furthermore, responsiveness to predator visual signal peak at 48 hours cumulative exposure, suggest an optimal predation risk exposure period of up to 48 hours. Key words: predator cognition, captive breeding, chemical signal, visual signal, endangered
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To determine the cause of the population decline in Gobiobotia naktongensis, substrate preference and burying behaviour were investigated in this study. In general, the species was shown to prefer a substrate size of 1 mm or less, depending on the flow. In addition, the burying depth varied according to the size of the fish and increased with a decrease in water temperature. Our findings showed that the main cause of the population reduction was the physical changes in the substrate structure due to the dams or barrages construction. Notably, the accumulation of silt and mud in the substrate upon the formation of an upstream lentic water region for structural construction and bed armouring caused by scouring and reduced downstream inflow of fine sediment were deterministic in the fish habitat changes, causing problems in burying. As sand substrate structure is critical for the survival and inhabitation of psammophilous species, efficient strategies should be developed with proper habitat management to reduce the anthropogenic damage
        4,000원
        4.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microphysogobio rapidus is designated as endangered species class I by Ministry of Environment, and its distribution and population have been gradually declining, and it is now limited to the Nam River and some tributary streams of the Nakdong River Watershed. For the restoration of this highly endangered species, it is important to identify the causes of the decline and establish appropriate restoration plans. However, due to lack of basic data and ecological research, most steps are stagnant. Therefore, in this study, we identified the differences in the physical, biological, and sociological habitats between current and past distributed sites through field surveys and literature reviews. As a result of the field survey, there were differences in conductivity between the current and past distributed sites, and fish communities were also showed differences. The literature data also showed that the physico-chemical values of the past distributed sites were generally unfavorable, which generated negative consequences on biological factors. In particular, the effects of urbanization were found to be a major factor affecting the habitat of M. rapidus. Habitat stabilization is crucial for the recovery of this endangered species. However, in the past distributed sites, disturbances such as stream development and weir construction have altered streams physico-chemically and result in changes of M. rapidus. Therefore, a comprehensive plan that considers both stream connectivity and water quality is needed to manage and restore the habitat of M. rapidus.
        4,500원
        8.
        2016.04 구독 인증기관·개인회원 무료
        Brachymystax lenok tsinlingensis (family Salmonidae), cold freshwater fish, is endemic to Asia. This species is currently distributed throughout Russia, Mongolia, China and the Korean Peninsula. B. lenok tsinlingensis in South Korea was severely affected by anthropogenic activities such as habitat destruction, agricultural run-off and water pollution, and hence this fish has recently been dramatically decreased in its population sizes and become now critically endangered. To recover the number of individuals of B. lenok tsinlingensis, stocking or translocation programs have been conducted continuously by local governments since 1970s. However, these programs made little effort to clarify populations that may have originated from stocked, translocated or introduced fish. An understanding of genetic characteristics of endangered populations is critical to develop effective conservation and restoration plans especially because genetic diversity ensues their future fate. Therefore, we assessed the “conservation status” of this species by estimating the level of genetic diversity and genetic structure among ten geographic populations including restored populations via reinforcement and supplementation. Also, we aimed to trace the genetic origins of the newly translocated population (Chiak) through a restoration practice program. Moreover, we inferred the phylogenetic relationships among Korean lenok populations as well as across the Northeast Asia. Two hundred eighteen individuals of B. lenok tsinlingensis were sampled from ten localities (Yanggu, Injae, Seorak, Bangtae and Hongcheon: North Han River basin; Pyeongchang, Chiak and Jeongseon: South Han River basin; Taebaek and Bonghwa: Nakdong River basin in South Korea). Based on mitochondrial DNA (mtDNA) control region and eight nuclear microsatellite loci, we found extremely low levels of within-population genetic diversity, which suggests small effective population sizes (Ne) within populations. For mtDNA control region, each population housed one, or at most, two haplotypes that are restricted to the respective localities, meaning that these ‘genetically unique’ lineages will be lost permanently if the local populations undergo extinction. The overall values of haplotype diversity (h) and nucleotide diversity (π) for the entire Korean population were 0.703 ± 0.024 and 0.021 ± 0.010, respectively. In the case of microsatellites, average number of alleles across the eight loci for the entire population was 9.1 and allelic richness (AR) per population ranged from 2.375 to 4.144 (mean = 3.104). The values of observed heterozygosity (HO) and expected heterozygosity (HE) were similar to each other [HO: 0.400 ~ 0.590 (mean = 0.518); HE: 0.407 ~ 0.608 (mean = 0.504)]. The inbreeding coefficient (FIS) values were generally low, ranging from 0.048 to 0.279. Consequently, the majority of the populations (except Yanggu and Pyeongchang) were not significantly deviated from Hardy-Weinberg equilibrium (HWE), suggesting random mating at these loci tested. In addition, we found that Korean lenok populations were significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles, indicating limited gene flow among populations, strong effects of genetic drift due to small Ne, or a combination of both. The Mantel test of microsatellites revealed a significant correlation (r = 0.414, P = 0.04) between genetic and geographic distances for pairwise comparisons among the ten populations, while that of mtDNA showed a lack of correlation. Given the shared identical mtDNA haplotype and similar microsatellite allelic distributions between Chiak and Hongcheon populations, we suggest that the restored (introduced) Chiak population would be inferred to be genetically originated from Hongcheon population. Phylogenetic relationships among Northeast Asian populations showed that South Korean lineages have more recently diverged from China (Yellow River), than between North Korea and Russia. Although the phylogenetic relationship would be expected to be associated with geography, South-North Korea and China populations with a similar latitude was more phylogenetically closely related. These findings may suggest a possible scenario for the historical movements of B. lenok tsinlingensis in Northeast Asia during Last Glacial Maximum (LGM). It would be supported by the line of evidence that most lenok populations migrated to southward from Northern Asia such as Russia and Mongolia during LGM because the Korean Peninsula was landlocked as inland epoch and functioned as a southern shelter with Yellow River. For this reason, the Korean Peninsula is suggested to be an important geographical region for better understanding phylogenetic relationships and evolutionary histories of B. lenok tsinlingensis across the Northeast Asia. Despite large efforts made to develop several restoration programs in South Korea for B. lenok tsinlingensis, it is still unknown whether these past restoration efforts were successful or fruitless, mainly because of little attention paid to post-restoration monitoring research. Hence, there was a lack of their published official records. In the future, conservation and restoration projects of the Korean lenok populations should consider the genetic data for a better understanding of their ecological and evolutionary trajectories. And finally, we hope that our findings here can help inform on the future effective conservation and restoration plans for B. lenok tsinlingensis populatio ns in South Korea.
        10.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        멸종위기에 처한 우리나라 고유 담수어인 꼬치동자개 Pseudobagrus brevicorpus의 증식 복원을 위한 연구의 일환으로 생태와 초기생활사에 대해 조사하여 다음과 같은 결과를 얻었다. 꼬치동자개는 특정 조건에 밀집되어 개체군을 형성하며 서식밀도는 1.25개체 m-2이었고, 생산력은 200~250개 마리-1 낮아 멸종위기 상황을 시사하였다. 산란은 자연산란 유도 결과 수초에 산란하는 것으로 추정되며 부화한 치어는 군집생
        4,000원