Background: Lateral epicondylitis (LE) is the most common chronic musculoskeletal pain condition of the upper extremities. LE is often related to forceful grip activities that require isometric contraction of the wrist extensors. A previous study evaluated the effect of the diamond taping technique on grip strength and pain; however, there has been no report on the change in the electromyography (EMG) findings of wrist extensors.
Objects: The aim of this study was to investigate the effect of diamond taping technique, using a rigid tape, on the EMG activities of the extensor carpi radialis (ECR) during grip activities. Methods: Twenty-four healthy subjects (mean age = 21.50 ± 2.76 years) volunteered to participate in this study. The subjects were instructed to perform forceful grip activities with and without diamond-type taping on the origin area of the ECR. Grip strength tests were performed at 100%, 75%, 50%, and 25% for maximal isometric contraction force. EMG data were collected from the ECR. Repeated measure analysis of variance was used to analyze the effect of grip force and taping (with and without). Statistical significance levels were set at α = 0.05. Comparison of the results with and without taping at different grip force were analyzed using independent t-test. Statistical significance levels were set at α = 0.01.
Results: Statistically significant association was observed between the taping application and forceful grip activity as revealed by the EMG data of the ECR (p < 0.05). EMG of the ECR significantly reduced for all muscle strength levels (p < 0.01) after taping.
Conclusion: This study shows an impressive effect of the diamond taping technique, using rigid tape, on wrist extensors during grip activities. Decreasing muscle activity via this taping approach could be utilized to enhance pain-free grip force and reduce pain in patients with LE. Our study suggested that this taping technique could be considered as an effective management strategy of LE.
Background:Rounded shoulder posture (RSP), a postural abnormality, might cause shoulder pain and pathologic conditions. Although most previous research has investigated RSP focusing on the proximal structures of the shoulder, such as the scapula and pectoralis muscles, the relationship between RSP and anterior distal structures of the upper extremity, such as the biceps brachii muscle and elbow joint, is not clearly understood.Objects:This study aimed to investigate the correlations between RSP and the biceps brachii length, elbow joint angle (EJA), pectoralis minor length, general pectoralis major length, humeral head anterior translation (HHAT), glenohumeral internal rotation (IR), external rotation (ER), and horizontal adduction (HAD).Methods:Twelve subjects with RSP (6 male, 6 female) were recruited. All subjects fulfilled the RSP criteria indicated by a distance ≥2.5 cm from the posterior aspect of the acromion to the table in the supine position. The examiner measured each of the following parameters twice: RSP, biceps brachii length, EJA, pectoralis minor length, pectoralis major length, HHAT, glenohumeral IR, ER, and HAD. Pearson’s correlation coefficient(r) was used to assess the correlation between RSP and all the variables.Results:There was a significant moderate positive correlation between RSP and biceps brachii length (r=.55, p=.032), moderate negative correlation between RSP and pectoralis minor length (r=-.62, p=.015), and moderate positive correlation between RSP and HHAT (r=.53, p=.038).Conclusion:The biceps brachii length, pectoralis minor length, and HHAT could be used to evaluate patients with RSP. Better understanding of the correlation between these factors and RSP could help in the development of effective methods to treat patients with this condition in clinical management.
The purpose of this study was to determine the difference of the pinch strength according to testing posture(standing and sitting) and elbow flexion degree(0。, 45。, 90。and 135。). Forty normal young adults(male: 20, female: 20, mean age: 22.68±2.91 years) participated in this study. The methods of this study were categorized as follows: 1) One set of measurement was performed on four elbow flexion degrees(0。, 45。, 90。and 135。) in two testing postures(standing and sitting) and all subjects were measured for 3 sets testing procedures in every experimental sessions. 2) Pinch strength in various elbow flexion degree was measured after 2 min rest time, and then each test set was repeatedly performed with 5 min rest time to prevent fatigue of muscles involved in the elbow joint. The result was obtained as follow: 1) In standing posture, there was statistically significant difference at 0。and 45。, 0。and 90。, 0。and 135。, 45。and 90。, 45。and 135。, 90。and 135。. 2) In sitting posture, there was statistically significant difference at 0。and 45。, 0。and 90。, 0。and 135。, 45。and 90。, 45。and 135。, 90。and 135。. 3) Statistically, there was no significant difference between standing and sitting posture in same elbow flexion degree, however pinch strength in standing posture was higher than sitting posture.
We processed meta-analysis to test if the effects of laser therapy and mobilization techniques are evidence-based practice for treating tennis elbow. By researching and collecting the results of previous studies on tennis elbow, we inquired into the difference in the effects of each treatment methods on pain, grip strength, and ROM. A total of 10 international and domestic articles on the treatments of tennis elbow were selected for this study, including 7 articles on the effect of laser therapy and 3 on mobilization techniques. According to the qualitative meta-analysis, all 7 of the articles on laser therapy and 1 of the mobilization technique were double-blinded and randomized the subjects, and all of the 10 studies were designed in a high quality research, using statistics. The results of the studies on laser therapy showed in terms of statistical significance: 4 out of 7 did not decrease pain after therapy, and 3 out of 5 did not increase grip strength after therapy. In the studies on the effects of mobilization technique, both the 2 studies significantly increased grip strength after therapy. For other studies which measured ROM and tension, the mobilization therapy increased ROM significantly, and decreased tension significantly. The results of our study are shown in a diverse form in terms of the effects of different therapy techniques. This is related to the accuracy of the measurement tools for assessments and diagnoses. Further qualitative studies on the evidence-based practice and researches on tennis elbow are needed.
The purpose of this study was to compare the difference of joint position sense between measurements. Fourteen healthy male subjects were recruited for this study. The elbow joint position senses were measured using angle reproduction test. The elbow joint position sense was assessed with three experimental conditions: ipsilateral reproduction test in open-chain condition, contralateral reproduction test in open-chain condition, ipsilateral reproduction test with weight in open-chain condition and ipsilateral reproduction test in closed-chain condition. The angular difference between stimulus position and the reproduced position (angular error) was calculated in all testing conditions to examine the accuracy of the joint position sense. One way ANOVA was used to compare the error angles in all experimental conditions. The error angles between measurements were significantly different in elbow joint. The error angles was smallest in ipsilateral reproduction test with weight in open-chain condition and was greatest in the contralateral reproduction test in open-chain condition. Findings of this study indicate that testing methods, types of task, existence of resistance should be considered in clinical assessment for the joint position sense.
In this paper, the prototype of surface EMG (ElectroMyoGram) sensor is developed for the robotic rehabilitation applications, and the developed sensor is composed of the electrodes, analog signal amplifiers, analog filters, ADC (analog to digital converter), and DSP (digital signal processor) for coding the application example. Since the raw EMG signal is very low voltage, it is amplified by about one thousand times. The artifacts of amplified EMG signal are removed by using the band-pass filter. Also, the processed analog EMG signal is converted into the digital form by using ADC embedded in DSP. The developed sensor shows approximately the linear characteristics between the amplitude values of the sensor signals measured from the biceps brachii of human upper arm and the joint angles of human elbow. Finally, to show the performance of the developed EMG sensor, we suggest the application example about the real-time human elbow motion acquisition by using the developed sensor.