검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dyeing process is a very important unit operation in the leather and textile industries; it produces significant amounts of waste effluent containing dyes and poses a substantial threat to the environment. Therefore, degradation of the industrial dye-waste liquid is necessary before its release into the environment. The current is focusing on the reduction of pollutant loads in industrial wastewater through remediating azo and thiazine dyes (synthetic solutions of textile dye consortium). The current research work is focused on the degradation of dye consortium through photo-electro-Fenton (PEF) processes via using dimensionally stable anode (Ti) and graphite cathode. The ideal conditions, which included a pH of 3, 0.1 (g/L) of textile dye consortium, 0.03 (g/L) of iron, 0.2 (g/L) of H2O2, and a 0.3 mAcm-2 of current density, were achieved to the removal of dye consortium over 40 min. The highest dye removal rate was discovered to be 96%. The transition of azo linkages into N2 or NH3 was confirmed by Fourier transforms infra-red spectroscopic analysis. PEF process reduced the 92% of chemical oxygen demand (COD) of textile dye consortium solution, and it meets the kinetics study of the pseudo-first-order. The degradation of dye through the PEF process was evaluated by using the cyclic voltammetric method. The toxicity tests showed that with the treated dye solution, seedlings grew well.
        4,800원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
        5,200원
        3.
        2020.04 KCI 등재 서비스 종료(열람 제한)
        To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/cm2, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.
        4.
        2008.01 KCI 등재 서비스 종료(열람 제한)
        The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, H2O2 and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added H2O2 onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.
        5.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        The feasibility and efficiency of the hydrogen peroxide produced by an electrolysis cell reactor was investigated. From regulating voltages for the given reaction time, the concentration of the hydrogen peroxide was gradually increased with increasing voltages. Optimal voltage range was found to be 10~15 V. The concentration of hydrogen peroxide was much higher with oxygen gas than without oxygen gas in the cathodic chamber. But there was a little difference in the generating rate of hydrogen peroxide regardless of the presence of nitrogen gas. Under given conditions, the maximum value of ICE(Instantaneous Current Efficiency) was about 38%, and then current density was 74 mA/cm2. The specific energy consumption was 0.694[㎾h/kg-H2O2]. Since Esp (Specific Energy Consumption)was very little value, It did not demand high energy in this system. Using the hydrogen peroxide gained in the experiment, Fenton's reaction was conducted and the removal of nitrobenzene, 3-chlorophenol and dye wastewater was studied. This results were very similar to the Fenton's reaction by using commercial hydrogen peroxide.