검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 77

        1.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the early development of parthenogenetic embryo, cytoplasm and nucleic acid fragmentation may be a cause of lower embryo development. The purpose of this study was to evaluate whether embryonic development and apoptosis factors can be reduced by controlling the in-vitro culture environment by the addition of hormones, pregnancy serum and uterine milk. Our study showed that the activity of Casp-3 increased within the cytoplasm when artificially used hormones to induce the incubation environment, and PCNA's manifestation was low. However, the addition of pregnant serum appeared to lower the Casp-3 activity compared to the other groups. In addition, MMP-9 activity was increased and early embryo development and cytoplasmic fidelity were also increased. Therefore, the results of the present study showed that the use of gestational serum in the development of parthenogenetic embryo inhibit apoptosis and increases cytoplasmic reorganization by natural environmental control in in vitro culture.
        4,000원
        2.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The establishment of porcine embryonic stem cells (ESCs) from porcine somatic cell nuclear transfer (SCNT) blastocysts is influenced by in vitro culture day of porcine reconstructed embryo and feeder cell type. Therefore, the objective of the present study was to determine the optimal in vitro culture period for reconstructed porcine SCNT embryos and mouse embryonic fibroblast (MEF) feeder cell type for enhancing colony formation efficiency from the inner cell mass (ICM) of porcine SCNT blastocysts and their outgrowth. As the results, porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days showed significantly increased efficiency in the formation of colonies, compared to those for 7 days. Moreover, MEF feeder cells derived from outbred ICR mice showed numerically the highest efficiency of colony formation in blastocysts produced through in vitro culture of porcine SCNT embryos for 8 days and porcine ESCs with typical ESC morphology were maintained more successfully over Passage 2 on outbred ICR mice-derived MEF feeder cells than on MEF feeder cells derived from inbred C57BL/6 and hybrid B6CBAF1 mice. Overall, the harmonization of porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days and MEF feeder cells derived from outbred ICR mice will greatly contribute to the successful establishment of ESCs derived from porcine SCNT blastocysts.
        4,000원
        3.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.
        4,000원
        4.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitric oxide (NO) has an important role in oocyte maturation and embryonic development in mammals. This study examined the effect of exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) in a maturation medium on meiotic progression and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. When oocytes were exposed to 0.1 μM SNAP for first 22 h of in vitro maturation (IVM) in Experiment 1, SNAP significantly improved blastocyst development in both defined and standard follicular fluid-supplemented media compared to untreated control (48.4 vs. 31.7-42.5%). SNAP treatment significantly arrested meiotic progression of oocytes at the germinal vesicle stage at 11 h of IVM (61.2 vs. 38.7%). However, there was no effect on meiotic progression at 22 h of IVM (Experiment 2). In Experiment 3, when oocytes were treated with SNAP at 0.001, 0.1 and 10 μM during the first 22 h of IVM to determine a suitable concentration, 0.1 μM SNAP (54.2%) exhibited a higher blastocyst formation than 0 and 10 μM SNAP (36.6 and 36.6%, respectively). Time-dependent effect of SNAP treatment was evaluated in Experiment 4. It was observed that SNAP treatment for the first 22 h of IVM significantly increased blastocyst formation compared to no treatment (57.1% vs. 46.2%). Antioxidant effect of SNAP was compared with that of cysteine. SNAP treatment significantly improved embryonic development to the blastocyst stage (49.1-51.5% vs. 34.4-37.5%) irrespective of the presence or absence of cysteine (Experiment 5). Moreover, SNAP significantly increased glutathione (GSH) content and inversely decreased the reactive oxygen species (ROS) level and mitochondrial oxidative activity in IVM oocytes. SNAP treatment during IVM showed a stimulating effect on in vitro development of SCNT embryos (Experiment 7). These results demonstrates that SNAP improves developmental competence of PA and SCNT embryos probably by maintaining the redox homeostasis through increasing GSH content and mitochondrial quality and decreasing ROS in IVM oocytes.
        4,000원
        5.
        2018.11 구독 인증기관·개인회원 무료
        Interferon tau (IFNT), has known as a key signal molecule for a period of pregnancy in ruminants owing to the need on maternal recognition of pregnancy. It is generated in trophectoderm cells of the elongation bovine conceptus at day 13-21 and a peak output is at day 15-17 of pregnancy period. Moreover, other studies indicated that it can be effective in the embryonic development and quality. In previous study, there were 8 bovine IFNT, but only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the peri-implantation. In this study, we target the one between the two, IFN-tau-c1 and then the effect of IFNT knockout in donor cells to bovine cloned embryonic development by somatic cell nuclear transfer (SCNT) was investigated. In order to proceed this study, the immature oocytes from the ovaries at local slaughterhouse have been matured in vitro for 22 hours. For preparing the donor cell that have a mutation on IFNT gene, somatic cells were transiently transfected with Cas9 protein and single guide RNA targeting IFNT, and various single derived colonies with high proliferation were isolated and confirm the mutation by PCR. Finally, one colony had mono-allelic mutation (4bps deletion) was picked out and applied as the donor cell to SCNT. A donor cell was injected into an oocyte that nucleus was removed. Reconstructed oocytes with the donor cell were fused by electrical shock, activated by chemical stimulation and cultured for 7 days in chemically defined medium. In this study, control (n=199) and IFNT knockout-group (n=219) were compared with four replications. As results, there was no significant difference between control-and IFNT-knockout group not only in cleavage rate, but also blastocyst formation rate (Control: 12.3% ± 9.2, IFNT knockout-group: 20.1 ± 11%). In addition, the number of blastocyst cell was not different between control (91.7 ± 26.2) and IFNT knockout group (83.5 ± 21.3). Some IFNT mutated blastocysts from SCNT were randomly selected for confirmation of the deletion of IFNT and all samples were positive for mutation. In conclusion, these data indicated that the interruption of IFNT did not influence the embryonic development. In future study, we will transfer these mutated embryos toto test the effect of IFNT for pregnancy period. This work was supported by BK21 PLUS Program for Creative Veterinary Science, the National Research Foundation of Korea (2017R1A2B3004972) and the Technology Development Program (S2566872) by MSS.
        6.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to establish the optimal chemical post-activation conditions in porcine embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) using 4 different chemical compositions (cytochalasin B (CB), cyclohexamide (CHX), demecolcine (DC), 6-dimethylaminopurine (DMAP). Porcine embryos were produced by PA and SCNT and then, cultured for post-activation with CB (7.5 μg/mL), CB (7.5 μg/mL) + CHX (10 μg/mL), CB (7.5 μg/mL) +DC (0.4 μg/mL), and CB (7.5 μg/mL) + DMAP (2 mM). In PA embryonic development, cleavage rates have been significantly higher in CB group (94.7%) and CB+DMAP group (94.1%) than that of CB+CHX and CB+DC group (88.1 and 84.3%, respectively). There have been no significant differences in blastocyst formation rates among the four groups. In cell number of blastocyst was shown in CB group (42.3%) significantly higher than CB+CHX and CB+DC group (40.6 and 40.6%, respectively). In SCNT embryonic development, CB+DMAP group (89.7%) significant differences were found on embryo cleavage rates when compared with other three groups. Blastocyst formation rates in CB+DMAP group (26.9%) were significantly higher when compared with CB, CB+CHX, and CB+DC groups (25.5, 20.2, and 22.1%, respectively). In blastocyst cell number, CB+DMAP group (41.4%) was found higher significant difference compared with other three groups. Additionally, we have investigated survivin expression in early development stages of porcine SCNT embryos for more confirmation. Our results establish that CB group and CB+DMAP group for 4 h during post-activation improves pre-implantation improvement of PA and SCNT embryos.
        4,000원
        7.
        2017.05 구독 인증기관·개인회원 무료
        Introduction Porcine embryonic stem cells (pESCs) derived from cloned embryos might be a useful animal model in biomedical research, however, establishment of cloned pESCs is difficult by its incomplete nuclear reprogramming. Here, we report the improved development competence of porcine cloned embryos by vitamin C (VC) supplement to establish the pESCs. Materials and Methods Slaughterhouse-derived oocytes were in vitro matured for 44h and parthenogenetic and cloned embryos were produced using matured oocytes. Both of embryos were cultured for 6 days in PZM-5 media and development rates were examined. Four different concentration of VC (0, 25, 50, 100, and 200 μg/ml) was supplemented in IVM and IVC media and preimplantation developments in the 5 groups were compared in both of embryos Results and Discussion In the cleavage rates of IVM group, significantly higher rate was shown in 50 mg/ml group than other groups (84.5 ± 0.6% vs. 69.8 ± 5.5, 75.7 ± 1.8, 80.4 ± 0.2, 72.4 ± 0.1%; P<0.05), respectively. Significantly higher rates of blastocyst development also were shown in 50 mg/ml group than other groups (27.0 ± 2.0% vs. 20.4 ± 1.4, 22.1 ± 1.3, 23.7 ± 1.2, 19.6 ± 1.3%; P<0.05), respectively. In the cleavage rate of IVC group, non-significantly different with each group (84.0 ± 1.3, 86.7 ± 1.0, 88.4 ± 1.4, 76.7 ± 3.0, 64.6 ± 4.4; P<0.05). In the blastocyst rate of IVC group, significantly higher rate was shown in 25mg/ml and 50 mg/ml group than other groups (22.3 ± 1.7, 23.8 ± 1.7% vs. 19.1 ± 1.3, 15.9 ± 1.0, 5.8 ± 1.5%; P<0.05) In conclusion, supplement of 50μg/ml of VC in IVM and IVC media enhanced the development of porcine parthenogenetic embryos and these results will be a helpful information in the development of porcine cloned embryos and derivation of its embryonic stem cells.
        8.
        2015.08 구독 인증기관 무료, 개인회원 유료
        체외 배양액에 성장호르몬 및 사이토카인의 첨가는 초기배 발육 및 생산된 배반포의 질에 영향을 미칠 수 있다. 본 연구는 돼지 유도만능줄기세포(porcine induced pluripotent stem cell, piPSC)의 조정배지(conditioned medium, CM)가 돼지 난자의 체외성숙 및 단위발생 후 초기배 발육에 미치는 영향을 검토하기 위하여 수행하였다. 난자-난구세포 복합체(cumulus-oocyte complex, COC)는 0(control), 25, or 50%의 줄기세포 배양액(stem cell medium, SM) 또는 CM이 첨가된 체외성숙 배양액으로 배양하였으며, 성숙된 난자는 활성화 유도 후 같은 농도의 SM 또는 CM을 첨가한 체외배양액에서 배양하였다. 체외 성숙율은 CM-25% 그룹에서 대조구보다 유의적으로 높았으나(p<0.05), 다른 SM 또는 CM 처리구와는 차이가 없었다. 배반포 형성율은 CM-25% 그룹(29.2%)에서 대조구(20.7%), SM-50%(19.6%) 및 CM-50%(23.66%) 처리구보다 유의적으로 높았다(p<0.05). 배반포에서의 세포수 및 세포사 비율은 SM-25% 그룹이 대조구에 비하여 유의적인 차이가 나타났다(p<0.05). 난자의 질과 연관되어 있는 유전자들(Oct4, Klf4, Tert 및 Zfp42)의 발현은 CM-25% 그룹에서 대조구보다 유의적으로 증가되었다(p<0.05). 따라서 본 실험의 결과 체외성숙(IVM) 및 체외발달(IVC) 배양액에 25% 수준의 CM의 첨가는 돼지 단위발생 난자의 배발달과 난자의 질적 향상에 기여하는 것으로 사료된다.
        4,000원
        9.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was designed to evaluate the effect of bovine serum albumin (BSA) in a maturation medium on oocyte maturation and embryonic development in pigs. Immature pig oocytes were matured for 44 h in a medium supplemented with 0.4% (w/v) BSA, 0.1% (w/v) polyvinyl alcohol (PVA), or 10% (v/v) pig follicular fluid (PFF). After IVM, oocytes reached metaphase II stage were activated for parthenogenesis (PA) or used as cytoplasts for somatic cell nuclear transfer (SCNT). Nuclear maturation (89.5%, 90.7% and 91.3% for BSA, PVA and PFF, respectively) and intraoocyte glutathione contents (1.20, 1.16 and 1.00 pixels/oocyte for BSA, PVA and PFF, respectively) were not altered by the macromolecules added to maturation medium. IVM of oocytes in a medium containing BSA (21.4%) and PVA (20.7%) showed significantly lower blastocyst formation after PA than culture in medium with PFF (39.2%). After SCNT, oocytes matured in medium with BSA showed decreased embryonic development to the blastocyst stage (9.2%) compared to those matured in medium with PFF (28.9%), while 23.6% of SCNT oocytes matured in medium with PVA developed to the blastocyst stage. When the effect of BSA in a maturation medium during the first 22 h and the second 22 h of IVM in combination with PFF or PVA was examined, PVA-BSA showed a higher nuclear maturation (94.1%) than BSA-PFF (84.5%). However, there was no significant difference in the blastocyst formation among tested combinations (47.3, 52.2, 50.0, 44.4 and 49.0% for PFF-PFF, PFF-BSA, PVA-BSA, BSA-PVA and BSA-PFF, respectively). Our results demonstrate that BSA and PVA added to maturation medium can support oocyte maturation comparable to PFF-supplemented medium. However, maturation of oocytes in a BSA-containing medium decreases embryonic development after PA and SCNT when compared with the medium supplemented with PFF.
        4,000원
        10.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effect of L-glutathione (GSH), an antioxidant, treatment during the somatic cell nuclear transfer (SCNT) procedures on the in vitro development and DNA methylation status of bovine SCNT embryos. Bovine in vitro matured (IVM) oocytes were enucleated and electrofused with a donor cell, then activated by a combination of Ca-ionophore and 6-dimethylaminopurine. The recipient oocytes or reconstituted oocytes were treated with 50 μM GSH during these SCNT procedures from enucleation to activation treatment. The SCNT embryos were cultured for 7 days to evaluate the in vitro development, apoptosis and DNA methylation in blastocysts. The apoptosis was measured by TUNEL assay and caspase-3 activity assay. Methylated DNA of SCNT embryos at the blastocyst stages was detected using a 5-methylcytidine (5-MeC) antibody. The developmental rate to the blastocyst stage was significantly higher (P<0.05) in GSH treatment group (32.5±1.2%, 78/235) than that of non-treated control SCNT embryos (22.3±1.8%, 50/224). TUNEL assay revealed that the numbers of apoptotic cells in GSH treatment group (2.3±0.4%) were significantly lower (P<0.05) than that of control (3.8±0.6%). Relative caspase-3 activity of GSH treated group was 0.8±0.06 fold compared to that of control. DNA methylation status of blastocysts in GSH treatment group (13.1±0.5, pixels/ embryo) was significantly lower (P<0.05) than that of control (17.4±0.9, pixels/embryo). These results suggest that antioxidant GSH treatment during SCNT procedures can improve the embryonic development and reduce the apoptosis and DNA methylation level of bovine SCNT embryos, which may enhance the nuclear reprogramming of bovine SCNT embryos.
        4,000원
        11.
        2014.04 구독 인증기관·개인회원 무료
        Teratocytes (TCs) are the cells derived from the embryonic serosal membrane of some parasitic hymenopteran insects. As a parasitic factor, TCs are multifunctional in host regulation by inducing nutritional, immune, and developmental alterations. However, little is understood about their genetic constituents. This study reveals a comprehensive view of the genes expressed by TCs through a transcriptome analysis based on RNAseq technology. More than 6.29 Gb sequences were used to assemble 34,686 contigs (>200 bp) and annotated into different functional categories. The TC transcriptome profile was clearly distinct from those of hemocytes and the fat body. The TC transcriptome contained components of insulin signaling and biosynthesis of juvenile hormone and 20-hydroxyecdysone. TCs also expressed various groups of digestive enzymes, supporting its nutritional role for the growing parasitoid larvae in parasitism. Furthermore, this transcriptome analysis annotated two kinds of immunosuppressive serine protease inhibitors (serpins) and Rho GTPase-activating proteins (RhoGAPs). To determine the biological functions of these factors, we devised ex vivo RNA interference (RNAi) by conducting knockdown of gene expression in in vitro cultured TCs followed by injection of the treated TCs to test insects. Ex vivo RNAi revealed that some serpins and RhoGAPs expressed in TCs inhibited host cellular immunity. This study reports a transcriptome of the unique TC animal cell, and its immunosuppressive genetic factors using ex vivo RNAi technology.
        12.
        2012.12 구독 인증기관 무료, 개인회원 유료
        Embryonic stem cell-preconditioned microenvironment is important for cancer cells properitities by change cell morphology and proliferation. This microenvironment induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration. The cancer microenvironment affects cancer cell proliferation and growth. However, the mechanism has not been clarified yet. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and reduces oncogenic gene expression. But ES microenvironment has no effect on telomerase activity, cell viability, cellular senescence, and methylation on Oct4 promoter region. Furthermore, methylation of Nanog was increase on ES-preconditioned microenvironment and supports results that no difference on RNA expression levels. Taken together, these results demonstrated that in the ES-preconditioned 3-D microenvironment is a crucial role for cancer cell proliferation not senescence.
        4,000원
        14.
        2012.06 구독 인증기관·개인회원 무료
        Pig embryonic stem cells (ESC) has been suggested to become important animal model for therapeutic cloning using embryonic stem cells derived by somatic cell nuclear transfer (SCNT). However, the quality of cloned embryo and derivation rate of cloned blastocyst has been presented limits for derivation of cloned embryonic stem cell. In this study, we have tried to overcome these problems by aggregating porcine embryos. Zonafree reconstructed SCNT Embryos were cultured in micro-wells singularly (non-aggregated group) or as aggregates of three (aggregated groups) at the four cell stage. Embryo quality of the cloned embryos and attachment on feeder layer rate significantly increased in the aggregates. The aggregation of pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of pig cloned blastocyst and improvement in the percentage of attachment on the feeder layer of cloned embryos. * This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.
        15.
        2012.06 구독 인증기관·개인회원 무료
        A recent study has reported that pluripotent stem cells can be categorized according to their pluripotent state. The first is a “naïve” state, which is characterized by small, round or dome-shaped colony morphologies, LIF and BMP4 signaling pathways and two active X chromosomes in female; mouse ES cells (mESCs) represent this type. A second “primed” state has also been described and is possible in mouse epiblast stem cells (mEpiSCs) or human ES cells (hESCs). These primed state pluripotent stem cells display flattened monolayer colony morphologies, FGF and Nodal/Activin signaling pathways and X chromosome inactivation in female. It has been suggested that, as a non-permissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. Meanwhile, a few studies have reported that primed pluripotent stem cell lines could be reverted to a naïve pluripotent state using various exogenous factors including GSK3β and MEK inhibitors, LIF, hypoxic conditions and up-regulation of Oct3 or klf4. Therefore, the purpose of this study was to investigate whether a LIF-dependent naïve pluripotent stem cell line could be derived from porcine embryonic fibroblasts(PEFs) via doxycycline (dox)-inducible reprogramming factors and LIF. In this study, we have been able to successfully induce PEFs into a LIF-dependent naïve pluripotent-like cell line showing a mESC-like morphology and the expression of pluripotent markers. Our results suggest the possibility of reprogramming to naive pluripotent- like stem cells from PEFs in porcine species. * This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.
        16.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber’s hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.
        4,000원
        17.
        2011.10 구독 인증기관·개인회원 무료
        Somatic cell nuclear transfer (SCNT) is an efficient technique which has been successfully applied to developmental biology, and resulted in the production of offspring from various species. It offers many opportunities in basic and medical research as well as endangered species preservation. On the other hand, embryonic stem (ES) cells are useful research tools for genetic engineering and developing disease models. In previous study, we established bovine IVF embryo derived ES cell line which can be grow indefinitely as undifferentiated cell state. In this study, we compared the effect of two different age cells (bovine ES cell; JNU-ibES-05 or adult ear fibroblast cell) on in vitro developmental potential of bovine SCNT embryo. To produce SCNT embryos, the ES cells or somatic cells were dissociated and transferred into enucleated MⅡ oocytes, and cleaved reconstructed embryos were cultured in CR1aa medium containing 10% FBS, 1 ug/ml epidermal growth factor (EGF) and 1 ug/ml insulin growth factor (IGF) for 8 days. In the result, blastocyst development rate was similar between ES cell treatment group and somatic cell treatment group, 27.7% (10/36) and 28.9% (11/ 38), respectively. However, there was particular difference in development speed from day 5 post SCNT, blastocyst expanding was 1 day faster in ES cell group than in somatic cell group. This difference was analyzed by semi-quantitative RT-PCR using pluripotency, growth and cell cycle gene markers. These results demonstrated that SCNT embryo using ES cell as a donor cell has better growth potential than somatic cell, and it will be a useful tool for a transgenic animal production.
        18.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In general, zona pellucida (ZP) of the blastocyst has to be removed first, then either isolated the inner cell mass (ICM) or ZP-removed whole blastocyst, which is then cultured on the feeder layer to induce ICM outgrowth for the generation of embryonic stem cells (ESC). However, it is unclear whether ICM isolation before seeding on feeder layer is beneficial or not because the interaction between ICM and trophoblasts may affect cellular growth and/or pluripotency during the culture on the feeder. In the present study, two ZP removal methods (mechanically by splitting with a 28-gauge needle versus chemically by the treatment of acid-Tyrode's solution) and two ICM isolation methods (ZP-free whole blastocyst seeding versus mechanical isolation of ICM) were evaluated for the efficient isolation and culture of putative parthenogenetic bovine ESC. The number of maintained outgrown colonies was counted in each experimental group. As the result, mechanical removal of ZP with a needle and followed by whole ZP-free blastocyst seeding on feeder cells tended to attach more on the feeder layer and resulted in more outgrown colonies with its simple and less time-costing benefits. Currently we are generating ESC lines in HanWoo cattle by using this method for initial outgrowth of the parthenogenetic bovine blastocysts.
        4,000원
        1 2 3 4