검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 60

        1.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The establishment of porcine embryonic stem cells (ESCs) from porcine somatic cell nuclear transfer (SCNT) blastocysts is influenced by in vitro culture day of porcine reconstructed embryo and feeder cell type. Therefore, the objective of the present study was to determine the optimal in vitro culture period for reconstructed porcine SCNT embryos and mouse embryonic fibroblast (MEF) feeder cell type for enhancing colony formation efficiency from the inner cell mass (ICM) of porcine SCNT blastocysts and their outgrowth. As the results, porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days showed significantly increased efficiency in the formation of colonies, compared to those for 7 days. Moreover, MEF feeder cells derived from outbred ICR mice showed numerically the highest efficiency of colony formation in blastocysts produced through in vitro culture of porcine SCNT embryos for 8 days and porcine ESCs with typical ESC morphology were maintained more successfully over Passage 2 on outbred ICR mice-derived MEF feeder cells than on MEF feeder cells derived from inbred C57BL/6 and hybrid B6CBAF1 mice. Overall, the harmonization of porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days and MEF feeder cells derived from outbred ICR mice will greatly contribute to the successful establishment of ESCs derived from porcine SCNT blastocysts.
        4,000원
        2.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.
        4,000원
        3.
        2017.05 구독 인증기관·개인회원 무료
        Introduction Porcine embryonic stem cells (pESCs) derived from cloned embryos might be a useful animal model in biomedical research, however, establishment of cloned pESCs is difficult by its incomplete nuclear reprogramming. Here, we report the improved development competence of porcine cloned embryos by vitamin C (VC) supplement to establish the pESCs. Materials and Methods Slaughterhouse-derived oocytes were in vitro matured for 44h and parthenogenetic and cloned embryos were produced using matured oocytes. Both of embryos were cultured for 6 days in PZM-5 media and development rates were examined. Four different concentration of VC (0, 25, 50, 100, and 200 μg/ml) was supplemented in IVM and IVC media and preimplantation developments in the 5 groups were compared in both of embryos Results and Discussion In the cleavage rates of IVM group, significantly higher rate was shown in 50 mg/ml group than other groups (84.5 ± 0.6% vs. 69.8 ± 5.5, 75.7 ± 1.8, 80.4 ± 0.2, 72.4 ± 0.1%; P<0.05), respectively. Significantly higher rates of blastocyst development also were shown in 50 mg/ml group than other groups (27.0 ± 2.0% vs. 20.4 ± 1.4, 22.1 ± 1.3, 23.7 ± 1.2, 19.6 ± 1.3%; P<0.05), respectively. In the cleavage rate of IVC group, non-significantly different with each group (84.0 ± 1.3, 86.7 ± 1.0, 88.4 ± 1.4, 76.7 ± 3.0, 64.6 ± 4.4; P<0.05). In the blastocyst rate of IVC group, significantly higher rate was shown in 25mg/ml and 50 mg/ml group than other groups (22.3 ± 1.7, 23.8 ± 1.7% vs. 19.1 ± 1.3, 15.9 ± 1.0, 5.8 ± 1.5%; P<0.05) In conclusion, supplement of 50μg/ml of VC in IVM and IVC media enhanced the development of porcine parthenogenetic embryos and these results will be a helpful information in the development of porcine cloned embryos and derivation of its embryonic stem cells.
        4.
        2015.08 구독 인증기관 무료, 개인회원 유료
        체외 배양액에 성장호르몬 및 사이토카인의 첨가는 초기배 발육 및 생산된 배반포의 질에 영향을 미칠 수 있다. 본 연구는 돼지 유도만능줄기세포(porcine induced pluripotent stem cell, piPSC)의 조정배지(conditioned medium, CM)가 돼지 난자의 체외성숙 및 단위발생 후 초기배 발육에 미치는 영향을 검토하기 위하여 수행하였다. 난자-난구세포 복합체(cumulus-oocyte complex, COC)는 0(control), 25, or 50%의 줄기세포 배양액(stem cell medium, SM) 또는 CM이 첨가된 체외성숙 배양액으로 배양하였으며, 성숙된 난자는 활성화 유도 후 같은 농도의 SM 또는 CM을 첨가한 체외배양액에서 배양하였다. 체외 성숙율은 CM-25% 그룹에서 대조구보다 유의적으로 높았으나(p<0.05), 다른 SM 또는 CM 처리구와는 차이가 없었다. 배반포 형성율은 CM-25% 그룹(29.2%)에서 대조구(20.7%), SM-50%(19.6%) 및 CM-50%(23.66%) 처리구보다 유의적으로 높았다(p<0.05). 배반포에서의 세포수 및 세포사 비율은 SM-25% 그룹이 대조구에 비하여 유의적인 차이가 나타났다(p<0.05). 난자의 질과 연관되어 있는 유전자들(Oct4, Klf4, Tert 및 Zfp42)의 발현은 CM-25% 그룹에서 대조구보다 유의적으로 증가되었다(p<0.05). 따라서 본 실험의 결과 체외성숙(IVM) 및 체외발달(IVC) 배양액에 25% 수준의 CM의 첨가는 돼지 단위발생 난자의 배발달과 난자의 질적 향상에 기여하는 것으로 사료된다.
        4,000원
        5.
        2012.12 구독 인증기관 무료, 개인회원 유료
        Embryonic stem cell-preconditioned microenvironment is important for cancer cells properitities by change cell morphology and proliferation. This microenvironment induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration. The cancer microenvironment affects cancer cell proliferation and growth. However, the mechanism has not been clarified yet. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and reduces oncogenic gene expression. But ES microenvironment has no effect on telomerase activity, cell viability, cellular senescence, and methylation on Oct4 promoter region. Furthermore, methylation of Nanog was increase on ES-preconditioned microenvironment and supports results that no difference on RNA expression levels. Taken together, these results demonstrated that in the ES-preconditioned 3-D microenvironment is a crucial role for cancer cell proliferation not senescence.
        4,000원
        7.
        2012.06 구독 인증기관·개인회원 무료
        Pig embryonic stem cells (ESC) has been suggested to become important animal model for therapeutic cloning using embryonic stem cells derived by somatic cell nuclear transfer (SCNT). However, the quality of cloned embryo and derivation rate of cloned blastocyst has been presented limits for derivation of cloned embryonic stem cell. In this study, we have tried to overcome these problems by aggregating porcine embryos. Zonafree reconstructed SCNT Embryos were cultured in micro-wells singularly (non-aggregated group) or as aggregates of three (aggregated groups) at the four cell stage. Embryo quality of the cloned embryos and attachment on feeder layer rate significantly increased in the aggregates. The aggregation of pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of pig cloned blastocyst and improvement in the percentage of attachment on the feeder layer of cloned embryos. * This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.
        8.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber’s hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.
        4,000원
        9.
        2011.10 구독 인증기관·개인회원 무료
        Somatic cell nuclear transfer (SCNT) is an efficient technique which has been successfully applied to developmental biology, and resulted in the production of offspring from various species. It offers many opportunities in basic and medical research as well as endangered species preservation. On the other hand, embryonic stem (ES) cells are useful research tools for genetic engineering and developing disease models. In previous study, we established bovine IVF embryo derived ES cell line which can be grow indefinitely as undifferentiated cell state. In this study, we compared the effect of two different age cells (bovine ES cell; JNU-ibES-05 or adult ear fibroblast cell) on in vitro developmental potential of bovine SCNT embryo. To produce SCNT embryos, the ES cells or somatic cells were dissociated and transferred into enucleated MⅡ oocytes, and cleaved reconstructed embryos were cultured in CR1aa medium containing 10% FBS, 1 ug/ml epidermal growth factor (EGF) and 1 ug/ml insulin growth factor (IGF) for 8 days. In the result, blastocyst development rate was similar between ES cell treatment group and somatic cell treatment group, 27.7% (10/36) and 28.9% (11/ 38), respectively. However, there was particular difference in development speed from day 5 post SCNT, blastocyst expanding was 1 day faster in ES cell group than in somatic cell group. This difference was analyzed by semi-quantitative RT-PCR using pluripotency, growth and cell cycle gene markers. These results demonstrated that SCNT embryo using ES cell as a donor cell has better growth potential than somatic cell, and it will be a useful tool for a transgenic animal production.
        10.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In general, zona pellucida (ZP) of the blastocyst has to be removed first, then either isolated the inner cell mass (ICM) or ZP-removed whole blastocyst, which is then cultured on the feeder layer to induce ICM outgrowth for the generation of embryonic stem cells (ESC). However, it is unclear whether ICM isolation before seeding on feeder layer is beneficial or not because the interaction between ICM and trophoblasts may affect cellular growth and/or pluripotency during the culture on the feeder. In the present study, two ZP removal methods (mechanically by splitting with a 28-gauge needle versus chemically by the treatment of acid-Tyrode's solution) and two ICM isolation methods (ZP-free whole blastocyst seeding versus mechanical isolation of ICM) were evaluated for the efficient isolation and culture of putative parthenogenetic bovine ESC. The number of maintained outgrown colonies was counted in each experimental group. As the result, mechanical removal of ZP with a needle and followed by whole ZP-free blastocyst seeding on feeder cells tended to attach more on the feeder layer and resulted in more outgrown colonies with its simple and less time-costing benefits. Currently we are generating ESC lines in HanWoo cattle by using this method for initial outgrowth of the parthenogenetic bovine blastocysts.
        4,000원
        19.
        2007.10 KCI 등재 구독 인증기관·개인회원 무료
        For many years, experience has been accumulated on embryo and gamete manipulation in mammals, The present work is an introduction of these techniques and their possible application in human embryology in s pecific cases, Mammalian c1on ing has been studied by many groups, but the success rate is sti ll low‘ Removal of maternal chromosomes from unfertil ized oocytes and injection of donor cells into enucleated oocytes are the most important factors for the improvement of cloning effi cien cy, Here, we introduce a novel one-step rnicromanipulation (OSM) system and laser-assisted zona pellucida piel'cing technique (LAZP) , 1n genera l, somatic cell nuclear transfer (SCNT) is completed by many processes including enucleation and donor cell fusion , Howevel', OSM is a simple method because donor cell is directly injected into ooplasm without fusion pl'ocess, 1n addition, chromosomal enucleation and donor cell inj ec tion are perfOl‘med simultaneously in OSM, While OSM was a pplied to porcine SCNT, LAZP was a pplied to murine SCNT, This rninirni zed the use of piezo-dri ven micromanipul ator (P1EZO) , I'educing chances 0 1' problems caused by P1EZO pulses, LAZP reduced time that took to pierce zona pellucida in removal of nucleus fl'om oocyte and somatic cell injection, which might have taken longer time with P1EZO, The simple , new OSM and LAZP system may help to enable large scale cloning by reduction of procedural steps, Pa l'thenogenesis de scribes the growth and development of an embryo without fertilization by a male Parthenogenetic ES cell s (PESCs) can be a useful cell source for tissue I'epail‘ and I'egeneration , Moreover , the defects in full-term developrnent of this PESCs enable researc hers to avoid the ethical concern , Here, the author showed that PESCs can differentiate into osteogenic lineage, The PESCs were induced osteogenic dlfferentlatlon The osteoblas t-specific gene expression such as osteocalcine, osteopontine, osteonectin, bone-sialo protein‘ coll agen type-l and alka line phos phatase showed osteogenic potential of differentiated PESCs, The author also focused on the neuronal induction of murine PESCs by simplified neurona l induction system to generate doparninergic (DA) neurons , As a result , PESCs were differentiated into nestin and Tuj-l positive cell s successfully, a lthough t he generation of DA neuron was Illruted For murine embryo cul ture, novel oil-free microtube cul tu re system was applied , This new culture system provides oil-free cu ltu re condi t ions and is easy to handle It was also associated with faster development and mOl'e t l'ophectodel'mal cells , which will enhance the development of murine embl'Yos to fur t hel' stages ,
        1 2 3