In this study, for the purpose of reducing the catch of small giant octopus in a net pot, an escape experiment of octopus was performed on five types of escape rings of different sizes. As a result of the experiment, the smallest giant octopus with a weight of 406 g was found to escape from an escape ring with a diameter of 30 mm or larger, and 592 g octopus, a weight similar to the octopus of the current minimum landing weight (600 g), escaped from an escape ring with a diameter of larger than 40 mm. An individual weight with 406 g becomes 39 mm when converted from a diameter of 25 mm circular escape vent; that is, the circumference to the inner diameter of the mesh. It can be inferred that the converted mesh size of 39 mm cannot escape. Logistic regression analysis was performed using a generalized linear model (GLM) to investigate the correlation between the ratio of escape ring size/Mantle diameter (R/MD) and the escape rate. As a result, it was found that there was a significant correlation between the R/MD ratio and the escape rate and that the higher the R/MD ratio, the greater the escape rate. As a result of logistic regression analysis, the R/MD value was denoted 0.520 with the 50% escape rate. In addition, it can be estimated to be about 50 mm when converted to the mesh size. Therefore, in this study, the diameter of the escape ring and the size of the escape possible of the octopus were experimentally considered. It was found that there was a significant correlation.
This study aims to understand the opening efficiency of the finless porpoise escape guide net by the type of extension net that is the part to which the escape guide net is attached in stow net. To this end, extension nets were manufactured in full size and the net mouth area and towing tension were investigated according to the towing speed (0.2, 0.4, 0.6 and 0.8 m/s) and the type of extension net (25 mm net and raschel net) in the water tank. As a result, the net mouth area of the guide net was larger when the raschel net was used for the extension net than when the 25 mm net was used under all towing speeds. In addition, regardless of the type of extension net, the net mouth area reached about 80% of the maximum value at a towing speed of 0.4 m/s. In the field, fishing operation of stow net is performed only when the current speed is above 0.4 m/s. Therefore, the speed of 0.4 m/s was confirmed as a meaningful value to determine whether it is possible to operate. As a result of analyzing the relationship between the net mouth area of the guide net and the towing tension, it was confirmed that the difference in the net mouth area of the guide net according to the type of the extension net was due to the difference in the solidity ratio.
This thesis is the fundamental study on the adaptation of escape device for reducing small size of fish in set-net. The escape devices for experiments were made the grid-type devices with three different slit sizes (15, 20 and 25mm). The experiments of size selectivity on escape devices were conducted by using two kinds of species as black rockfish (Sebastes schlegeli) and sea perch (Lateolabrax maculatusi) in the experimental tank. The size selectivity curve was fitted by using a logistic function and the parameters of selectivity curve were estimated by a maximum likelihood method. In the results; 50% selection ranges for the grid-type escape devices with three different slit sizes were; a black rockfish was 13.30, 19.22 and 22.06cm and a sea perch was 17.64, 20.91 and 22.78cm, respectively. The 50% selection range of a black rockfish was wilder than a sea perch about 1.1~1.3 time. Therefore, the small size of fish are able to reduce by using the grid type escape device. However, the optimum slit size of grid should be decided to consider the size of target species and economics of catches.