검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 우리나라에 태풍이 내습할 때 먼저 피해를 받는 남해안 지역을 대표하는 Quantile을 제안하고, 각 지점들의 재 현기간에 따른 극치 풍속을 추정하기 위하여 연 최대풍속 자료와 Hosking이 제안한 선형-모멘트 방법(L-moments)을 이용한 지역빈도 해석을 수행하였다. 모든 기상관측 지점에서는 비정상적인 값이 존재하지 않았고 이질성 검정을 통해서 하나의 동질 한 지역을 나타 낼 수 있음을 확인하였다. 또한 적합도 과정을 통해서 Generalized Normal (GNO) 및 Generalized Extreme Value(GEV) 분포를 남해안 지역을 대표하는 빈도분포로 선택하였다. 상대 오차(RB)와 상대 평균제곱근 오차(RRMSE)를 이용하여 두 분포의 안정성을 평가한 결 과, GNO 분포가 GEV 분포보다 더 안정한 것을 알 수 있었다. 마지막으로 남해안 지역을 대표하는 Quantile과 각 지점들의 평균, 중앙 값, 그리고 위치 매개변수를 이용하여 지점들의 극치 풍속을 추정하였다. 본 연구에서 적용한 지역빈도해석이 자료가 부족하거나 계측 되지 않은 지점들에 대한 극치 풍속을 추정하기 위한 방법으로서 도입이 필요하다고 생각된다.
        4,000원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 국내 최초로 건축구조기준(KBC 2016)에 기반하여 확률적 영역에서 초과손상확률 형태와 평균손상확률 형태 의 강풍 취약도 평가 방법론을 개발하였다. 본 연구에서는 풍하중에 대한 3초 순간풍속의 영향을 고려할 수 있는 풍하중 산정식을 건 축구조기준을 기초로 유도하였다. 또한 풍하중과 관련된 문헌을 기초로 유도된 3초 순간풍속 기반의 풍하중 산정식에 적용할 수 있는 풍하중 산정계수의 통계치를 제시하였다. 본 연구에서는 초과손상확률 형태와 평균손상확률 형태의 강풍 취약도를 평가하기 위하여 몬테카를로 모사(Monte Carlo Simulation) 기법을 이용하여 해석적 확률 모델을 개발하였다. 제안한 강풍 취약도 평가 방법론의 신뢰 성은 저층 건축물 모형의 지붕 쉬딩 패널 시스템(roof sheathing panel system)을 대상으로 ASCE(American Society of Civil Engineers) 풍하중 기준을 적용한 취약도 평가 방법론의 결과와 비교·검증되었다. 본 연구는 국내 건축구조기준의 풍하중 산정식을 이용하여 강 풍 취약도의 평가 방법론을 보이며, 제안된 방법론에 의한 강풍 취약도는 기존 ASCE 기반 방법론의 결과와 비교하여 작은 오차 범위 내에서 잘 일치함이 확인되었다. 본 연구에서 제시한 강풍 취약도 평가 방법론은 자연재해저감계획 등에 따른 강풍 피해 예측 시 취약 도 구축 방법으로 적용될 수 있을 것으로 판단된다.
        4,000원
        5.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 서해대교, 인천대교와 같은 장대교량은 대부분 빈번하게 태풍에 의해 영향을 받는 해안에 위치하였으며, 교량의 길이가 긴 만큼 풍하중에 의한 영향이 다른 하중에 비해 상대적으로 크기 때문에 내풍 안정성을 확보하기 위해 정확한 설계풍속을 산정하는 것이 매우 중요하다. 본 연구에서는 태풍의 기후학적 특성 인자로 중심기압깊이, 태풍이동속도, 태풍이동방향, 최단접근거리를 결정하였으며, 태풍의 기후학적 특성들의 확률 분포를 추정하고, 바람장 모형과 중심기압상승 모형을 적용하여 몬테카를로 시뮬레이션을 실시하였다. 분석결과, 대체적으로 제주도와 남해안 지역의 재현기간 풍속이 크게 나오며 고위도로 갈수록 작아지는 특징을 나타냈다. 이와 같은 특징이 나타난 가장 큰 원인은 고위도 분석지점 표본 태풍의 중심기압이 저위도 분석지점 표본 태풍의 중심기압보다 높기 때문으로 판단되며, 또한 우리나라에 해상에서 육지로 이동하면서 쇠퇴기를 겪어 점차 약해지기 때문인 것으로 분석되었다. 또한, 시뮬레이션 결과를 도로교 설계기준 100년 재현기간 풍속(10분 평균, 지상 10m, 지표조도 II)과 비교한 결과, 태풍시뮬레이션의 결과가 낮게 나타났으며, 이러한 점을 볼 때 도로교 설계기준의 기본 풍속이 높게 산정되어 있다고 판단되며, 기상자료 분석과 같은 추가적인 연구를 통해 기본풍속 조정에 대한 연구가 수행 되어야 할 것으로 사료된다.
        4,000원
        6.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 태풍 동반 강풍으로 발생한 피해를 예측하기 위하여 강풍 위험도 평가 모델을 개발하고 위험도를 평가하였다 . 강풍 위험도 평가 모델은 강풍 위험 모델과 강풍 취약도 모델의 합성곱을 통하여 개발되었으며, 강풍 위험과 강풍 취약도 모델은 모두 확률기반의 몬테카를로 모사 기법을 이용하여 개발되었다. 강풍 위험도는 아파트에 설치되어 있는 창호 시스템에 대하여 정량적으로 평가되었다. 강풍 위험도에 영향을 미치는 요인들의 상대적 영향성을 평가하기 위하여 지역적 요인(부산, 대구, 대전, 서울), 지형적 요인(지형계수, 지표조도구분), 건물의 형태적 요인(건물 높이, 지붕 경사각, 주 호수)에 따라 강풍 위험도를 비교하였다. 개발된 위험도 평가 모델을 적용하여 총 432개 강풍 위험도를 비교한 결과, 지표조도구분이 강풍 위험도에 가장 높은 영향을 보이는 것을 확인하였으며, 다음으로 지형계수, 건물 높이, 평가 지역, 지붕 경사각, 주호 수 차례로 영향을 미치는 것을 파악하였다. 본 연구에서 확립된 강풍 위험도 평가 모델은 창호 시스템의 경제적 가치와 결합하여 강풍으로 인한 손실 추정 및 피해 저감 대책 수립의 기본 데이터로 활용이 가능할 것으로 사료된다.
        4,000원
        7.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 강풍 위험과 강풍 취약도의 합성곱을 통하여 강풍 위험도를 평가할 수 있는 확률적 체계를 수립하였으며, 수치적으로 개발한 모형으로 아파트 창호 시스템의 강풍 위험도를 평가하였다. 강풍 위험 모형은 1951년부터 2013년까지에 한반도에 영향을 준 태풍의 기후학적 자료를 몬테카를로 모사기법에 적용하여 개발되었다. 또한 몬테카를로 모사기법으로 창호 시스템의 저항성능과 풍하중의 확률 분포를 비교하여 강풍에 대한 4가지 피해단계의 구조적 파괴확률을 평가할 수 있는 취약도 모형이 개발되었다. 개발된 몬테카를로 모사기법으로 평가한 강풍 위험과 강풍 취약도는 각각 웨이블 분포와 로그정규분포로 곡선맞춤 되었으며, 합성곱을 통한 강풍 위험도 평가에 사용되었다. 본 연구에서 개발한 확률적 위험도 평가체계를 통하여 평가지역, 지표조도, 지형, 지붕 경사각, 건물 높이 등이 아파트 창호 시스템의 강풍 위험도에 미치는 영향성을 정량적으로 평가할 수 있었다. 향후 본 연구를 통하여 개발된 강풍 위험도 평가 모델은 평가지역의 존재하는 건축물에 대한 데이터베이스와 결합하여 손실추정 및 피해 저감대책 수립 등의 분야에서 활용이 가능할 것으로 판단된다.
        4,000원
        8.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍력발전기 허브의 구조적 안정성을 확보하기 위하여 국가바람지도를 이용한 극한풍속을 추정하였다. 대상지역은 우리나라 풍력발전 주요지역인 15개 지역을 선정하였고 수치기상자료(2005년~2007년)의 시계열 풍속으로부터 일최대풍속과 월최대풍속을 추출하여 평가시간을 환산하였다. 수치기상자료의 신뢰성을 판단하기 위해 풍황측정자료와 비교하였고 극치분포해석의 확률분포모델은 Gumbel분포 및 Weibull분포를 통해 극한풍속을 추정하였다. 본 연구의 결과로부터 극한풍속을 추정함에 있어 월최대풍속자료를 사용하는 것이 적합한 것으로 판단된다.
        4,000원
        12.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        For this study, WRF numerical modeling was performed, using RDAPS information for input data on typhoons affecting the Korean peninsula to produce wind data of 700hPa. RAM numerical modeling was also used to calculate 3-second gusts as the extreme wind speed. After comparing wind speeds at an altitude of 10 m to evaluate the feasibility of WRF numerical modeling, modeled values were found to be similar with measured ones, reflecting change tendencies well. Therefore, the WRF numerical modeling results were verified. As a result of comparing and analyzing these wind speeds, as calculated through RAM numerical modeling, to evaluate applicability for disaster preparedness, change tendencies were observed to be similar between modeled and measured values. In particular, modeled values were slightly higher than measured ones, indicating applicability for the prevention of possible damage due to gales. Our analysis of 3-second gusts during the study period showed a high distribution of 3-second gusts in the southeast region of the Korean peninsula from 2002-2006. The frequency of 3-second gusts increased in the central north region of Korea as time progressed. Our analysis on the characteristics of 3-second gusts during years characterized by El Niño or La Nina showed greater strength during hurricanes that affected the Korean peninsula in El Niño years.
        13.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        There were 35 typhoons affecting Korean Peninsula from 1999 to 2009(The average annual number of typhoon is 3.18). Among these typhoons, the number of typhoon passing through the Yellow sea, the Southern sea and the East sea were 14, 6 and 15 respectively. Wind speed on the height of 10 m can be finally estimated using the surface roughness after we calculate wind speed on the height of 300 m from the data on the surface of 700 hPa. From the wind speeds on the height of 10 m, we can understand the regional distributions of strong wind speed are very different according to the typhoon tracks. Wind speed range showing the highest frequency is 10~20 m/s(45.69%), below 10 m/s(30.72%) and 20~30 m/s(17.31%) in high order. From the analysis of the wind speed on the hight of 80 m, we can know the number of occurrence of wind speed between 50 and 60 m/s that can affect wind power generation are 104(0.57%) and those of between 60 and 70 m/s that can be considered as extreme wind speed are even 8(0.04%).
        14.
        2013.04 서비스 종료(열람 제한)
        This study estimated extreme wind speed by means of national wind map, provided by Korea Institute of Energy Research, to sustain the wind towers’ structural stability that is required for the production of mass wind power. The number of research object regions is three in the East, West and South seas. Meteorological resource data were calculated by dividing the data into the various reference periods. In addition, Gumbel distribution method and Extreme Wind Speed Model (EWM) indicated in IEC 61400-3 were adopted to measure the extreme wind speed. In conclusion, it is discovered that the more suitable Gumbel distribution method is to secure the stability of wind towers.