Construction industry is considered as one of the most high-risk industries for work-related injuries and fatalities, accounting for more than half of fatalities in Korea. Advanced countries have recognized the critical role of designers in preventing construction accidents and have established regulations on design for safety. In line with this, the Korean government have also implemented regulations that require owners and designers to review the safety of design outcomes. However, it has been observed that designers face challenges in identifying hazards and integrating design solutions at the design stage mainly due to their shortage of required knowledge and skills. This study aimed to examine design solutions that can be applied to prevent fall accidents in the construction industry, and to establish a relationship between these solutions and fatal fall accidents occurred over the past three years in Korea. This study also analyzed the relationships of four variables (construction type, cost, work type, and fall location) with design solutions. The results indicated that all four variables have significant relationships with design solutions, with fall location showing the strongest relationship. The design solutions and their relationships with fatal fall accidents identified in this study can be utilized in identifying hazard and integrating design solutions to ensure design for safety.
Many industrial accidents have occurred continuously in the manufacturing industries, construction industries, and service industries of Korea. Fatal accidents have occurred most frequently in the construction industries of Korea. Especially, the trend analysis of the accident rate and fatal accident rate is very important in order to prevent industrial accidents in the construction industries systematically. This paper considers forecasting of the accident rate and fatal accident rate with static and dynamic time series analysis methods in the construction industries. Therefore, this paper describes the optimal accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM), and kalman filtering model (KFM) with existing accident data in construction industries. In this paper, microsoft foundation class (MFC) soft of Visual Studio 2008 was used to predict the accident rate and fatal accident rate. Zero Accident Program developed in this paper is defined as the predicted accident rate and fatal accident rate, the zero accident target time, and the zero accident time based on the achievement probability calculated rationally and practically. The minimum value for minimizing SSE in the construction industries was found in 0.1666 and 1.4579 in the accident rate and fatal accident rate, respectively. Accordingly, RAM and ARIMA model are ideally applied in the accident rate and fatal accident rate, respectively. Finally, the trend analysis of this paper provides decisive information in order to prevent industrial accidents in construction industries very systematically.