Equine follicle stimulating hormone receptor (eFSHR) has a large extracellular domain and an intracellular domain containing approximately 10 phosphorylation sites within the G protein-coupled receptor. This study was conducted to analyze the function of phosphorylation sties at the eFSHR C-terminal region. We constructed a mutant of eFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 641 (eFSHR-t641). This removed 10 potential phosphorylation sites from the C-terminal region of the intracellular loop. The eFSHR-wild type (eFSHR-wt) and eFSHR-t641 cDNAs were subcloned into the pCMV-ARMS1-PK2 expression vector. These plasmids were transfected into PathHunter CHO-K1 Parental cells expressing β-arrestin 2 enzyme acceptor fusion protein and analyzed for agonist-induced cAMP response. The cAMP response in cells expressing eFSHR-t641 was lower than the response in cells expressing eFSHR-wt. EC50 values of eFSHR-wt and eFSHR-t641 were 1079 ng/mL and 1834 ng/mL, respectively. eFSHR-t641 was approximately 0.58-fold compared with that of eFSHR-wt. The maximal response in eFSHR-wt and eFSHR-t641 was 24.7 nM and 16.7 nM, respectively. The Rmax value of phosphorylation sites in eFSHR-t641 was also decreased to approximately 68.4% of that in eFSHR-wt. The collective data implicate that the phosphorylation sites in the eFSHR C-terminal region have a pivotal role in signal transduction in PathHunter CHO-K1 cells, and indicate that β-arrestin is involved in coupling the activated receptors to the internalization system.
This study aimed to investigate the function of the constitutively activating mutation D540G on eel FSHR activity by in vitro functional studies. Site-directed mutagenesis was carried out to generate the D-to-G mutation at position 540 of the pcDNA3-eel FSHR construct. Vectors expressing either wild type or mutant receptor were transfected into Chinese hamster ovary (CHO-K1) cells. The functional characteristics of both the wild type and mutant receptors were analyzed by a cAMP assay. cAMP accumulation was highly increased in cells transfected with the D540G mutant receptor in a dose-dependent manner. Of note, basal cAMP levels were remarkably increased (~13.1-fold) with expression of this mutant when compared to wild type receptor. These findings suggest that the D540G mutation in the eel FSHR may contribute to ovulation during eel sex maturation as well as play a pivotal role in inducing FSHR activity.
The objective of this study was to establish an in vitro culture system for ovarian preantral follicles of B6D2F1. First, we optimized the in vitro preantral-follicle culture by culture duration, follicle stimulating hormone (FSH) type, and activin A concentration. Duration of in vitro culture for 9, 11, and 13 days was sufficient for the normal development of preantral follicles to antral follicles. Formation of cumulus cell–oocyte complex (COC) was induced by treatment with human chorionic gonadotropin (hCG; 2.5 IU/mL) and epidermal growth factor (EGF; 5 ng/mL). In addition, metaphase II (MII) oocytes formed during this in vitro culture of preantral follicles. In vitro preantral-follicle culture for 9 days showed higher rates of growth and maturation, thus yielding a greater number of antral follicles, and there were significant differences (p < 0.05) in the number of MII oocytes (that formed from these preantral follicles via differentiation) between the 9-day culture and 11-day or 13-day culture. The follicles cultured for 9 days contained a tightly packed well-defined COC, whereas in follicles cultured for 11 days, the COC was not well defined (spreading was observed in the culture dish); the follicles cultured for 13 days disintegrated and released the oocyte. Second, we compared the growth of the preantral follicles in vitro in the presence of various FSH types. There were no significant differences in the growth and maturation rates and in differentiation into MII oocytes during in vitro culture between preantral follicles supplemented with FSH from Merck and those supplemented with FSH from Sigma. To increase the efficiency of MII oocyte formation, the preantral follicles were cultured at different activin A concentrations (0 to 200 ng/mL). The control follicles, which were not treated with activin A, showed the highest rate of differentiation into antral follicles and into MII oocytes among all the groups (0 to 200 ng/mL). Therefore, activin A (50 to 200 ng/mL) had a negative effect on oocyte maturation. Thus, in this study, we propose an in vitro system of preantral-follicle culture that can serve as a therapeutic strategy for fertility preservation of human oocytes for assisted reproductive medicine, for conservation of endangered species, and for creation of superior breeds.
In this study, we analyzed signal transduction by equine follicle-stimulating hormone receptor (eFSHR) on stimulation with recombinant eelFSHβ/α (rec-eelFSHβ/α), natural porcine FSH (pFSH), and natural human FSH (hFSH). cAMP stimulation in CHO-K1 cells expressing eFSHR was determined upon exposure to different doses (0-1450 ng/mL) of these hormones. The EC50 value of rec-eelFSHβ/α was 53.35 ng/mL. The Rmax values of rec-eelFSHβ/α and pFSH were 28.12 and 2.88 ng/mL, respectively. The activity of rec-eelFSHβ/α was much higher than that of natural pFSH. However, signal transduction in CHO PathHunter Parental cells expressing eFSHR was not enhanced by stimulation with natural hFSH. Thus, rec-eelFSHβ/α was completely active in cells expressing eFSHR. However, natural hFSH did not invoke a signal response in cells expressing eFSHR. Particularly, natural pFSH was weakly active in the same cells. These results showed that eelFSHβ/α has potent activity in cells expressing eFSHR. Thus, rec-eelFSHβ/α may efficiently bind to eFSHR, where as natural hFSH does not bind to eFSHR.
Equine chorionic gonadotropin (eCG) is a heavily glycosylated glycoprotein composed of non-covalently linked α- and β-subunits. To study the function and signal transduction of tethered recombinant-eCG (rec-eCG), a single chain eCG molecule was constructed, and the rec-eCG protein was prepared. In this study, we constructed 5 mutants (Δ1, Δ2, Δ3, Δ4, and Δ5) of rec-eCG using data about known glycoprotein hormones to analyze the role of specific follicle stimulating homone (FSH)-like activity. Three amino acids of certain specific sites were replaced with alanine. The expression vectors were transfected into CHO cells and subjected to G418 selection for 2~3 weeks. The media were collected and the quantity of secreted tethered rec-eCGs was quantified by ELISA. The LH- and FSH-like activities were assayed in terms of cAMP production by rat LH/CG and rat FSH receptors. Then, the metabolic clearance rate analyzed by the injection of rec-eCG (5 IU) into the tail vein was analyzed. The mutant eCGs (Δ1, Δ4, and Δ5) were transcripted, but not translated into proteins. Rec-eCG Δ2 was secreted in much lower amounts than the wild type. Only the rec-eCG Δ3 (β-subunit: Gln94-Ile95-Lys96→Ala94-Ala95-Ala96) was efficiently secreted. Although activity is low, its LH-like activity was similar to that of tethered eCGβα. However, the FSH-like activity of rec-eCGβαΔ3 was completely flat. The result of the analysis of the metabolic clearance rate shoed the persistence of the mutant in the blood until 4 hours after the injection. After then, it almost disappeared at 8 hours. Taken together, these data suggest that 94~96 amino acid sequences in eCG β-subunit appear to be of utmost importance for signal transduction of the FSH receptor.
The objective of this study was to examine the effect of eCG and various concentrations (20, 40, and 80 ) of porcine FSH on nuclear maturation and intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones (10 IU/ml hCG and 10 IU/ml eCG or FSH) for the first 22 h and then further cultured in hormone-tree medium for an additional 22 h. Nuclear maturation of oocytes () was not influencem foreCG and various concentrations FSH. Embryonic development to the cleavage stage () and mean number of cells in blastocyst ( cells) after PA were not altered but blastocyst formation e-treignificaddlor(p<0.05) improvem forthe supplementation eith 80 FSHr(64%) compared to 47%, io8%, iand 47% in oocytes that were treated with eCG, 20,i and 40 FSH,i numectivelo. In SCNT, fusion () of cell-cytoplast couplets and siosequent embryo cleavage () were not influencem fordifferent gonadotropins but blastocyst formation tended to increase forthe supplementation eith 80 FSHr(25% vs. ). Our nuults demonstrated that oocyte maturation and embryonic development after PA and SCNT e-frinfluencem fortype of gcem fortype of gits concentration. In this study, supplementation of maturation medium eith 80 FSHrimproved preimplantation development of PA and SCNT pig embryos, probably by increasing intracellular GSH concentration of matured oocytes.
The present study investigated the effects of follicle stimulating hormone (FSH) and human chorionic gonadotrophin (hCG) on the nuclear maturation of canine oocytes. Oocytes were recovered from mongrel female ovaries in various reproductive states; follicular, luteal or anestrous stage. Oocytes were cultured in serum-free tissue culture medium (TCM)-199 supplemented with various concentrations of FSH (Exp. 1: 0, 0.5, 1.0 or 10 IU) or hCG (Exp. 2: 0, 0.5, 1.0 or 10 IU) or both (Exp. 3: 1 IU FSH + 1 IU hCG) for 72 hr to determine the effective concentration of these hormones, and to examine their combined effect. After maturation culture, oocytes were denuded in PBS containing 0.1% (w/v) hyaluronidase by gentle pipetting. The denuded oocytes were stained with 1.9 μM. Hoechst 33342 in glycerol and the nuclear state of oocytes was evaluated under UV light. More (p<0.05) oocytes matured to MII stage when follicular stage oocytes were supplemented with 1 IU FSH (6.2%) compared with the control, 0.1 or 10.0 IU FSH (0 to 1.2%). Significantly higher (p<0.05) maturation rate to MII stage was observed in follicular stage oocytes supplemented with 1.0 IU hCG (7.2%) compared with the control or other hCG supplemented groups (0 to 1.5%). However, the combination of FSH and hCG did not improve the nuclear maturation rate of canine oocyte (2.4 %) compared with FSH (6.2%) and hCG alone (7.2%). In conclusion, FSH or hCG alone significantly increased the maturation of canine oocytes to MII stage.
As an preliminary experiment for making transgenic animals producing human follicle stimulating hormone (hFSH), we tried to express recombinant hFSH gene in vitro. hFSH is a heterodimeric glycoprotein hormone produced in the anterior pituitary gland. The hormone is essential in the regulation of reproductive processes, such as follicular development and ovulation. Genes encoding the common gonadotrophin alpha subunit and FSH-specific beta subunit were inserted into retroviral vectors under the control of the rat beta actin promoter. Gene transfer to the Chinese hamster ovary (CHO) cells was done by infection of the retroviruses harvested from PT67 packaging cells transfected with recombinant retrovirus vector DNA. After selection with G4l8, PCR and RT-PCR analyses of the G4l8-resistant CHO cells showed successful transfer and expression of both and fragments of the FSH gene.
The present study aimed at determining the effective dose of Folltropin, a follicle timulating hormone (FSH), on superovulation in indigenous cows of Bangladesh. Fifteen regularly cycling 5~7 years old dry cows, weighing 200~250 kg with 2.5~3.0 body condition scores (BCS) were divided into three groups (n=5). Individual groups were superovulated with 100, 200 or 300 mg of Folltropin per animal. The superovulation treatment was initiated at Day 10 or Day 11 of the estrous cycle (Day 0=day of estrus). Alfaprostol (6 mg) was injected to each cow 72 h after the initiation of superovulation treatment to induce eestrus. After confirming standing estrus, the cows were inseminated 2~3 times, 12 h apart, depending on the duration of estrus. At Day 6 or Day 7, individual horns of the uterus were flushed with 150~200 of phosphate buffered saline supplemented with BSA (0.2%), penicillin (100 IU/) and streptomycin (100 /) using a two-way foley catheter. The embryos were concentrated, removing the excess medium through an embryo filter, and identified under a stereomicroscope. The identified embryos were collected, washed four times, evaluated and graded as excellent, good, fair or poor. The excellent, good and fair embryos were considered as transferable quality embryos. The mean (range). numbers of embryos collected vs. transferable quality embryos far 100, 200 and 300 mg of Folltropin were 4.5 (1~10) vs. 3.5 (1~8); 2.5 (1~4) vs. 1 (0~2) and 0.0 (0~0) vs. 0.0 (0~0), respectively, Folltropin at a dose of 100 or 200 mg produced suitable ovarian stimulation for superovulation in indigenous zebu cows of Bangladesh. A dose of 300 mg or more Folltropin consistently caused preovulatory corpora lutea formation in the ovaries and resulted in zero embryo recovery.
The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone (rec-eelFSHβ/α) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the rec-eelFSHβ/α protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The EC50 following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing β-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing β-arrestin.
Previous studies showed that recombinant equine chorionic gonadotropin (rec-eCGβ/α) exhibits both folliclestimulating hormone (FSH) and luteinizing hormone (LH)-like activities in rat LHR- and FSHR-expressing cells. In this study, we analyzed signal transduction by eelFSHR and eelLHR upon stimulation with rec-eCGβ/α and native eCG. The cyclic adenosine monophosphate (cAMP) stimulation in CHO-K1 cells expressing eelLHR was determined upon exposure to different doses (0–1,450 ng/mL) of rec-eCGβ/α and native eCG. The EC50 values of rec-eCGβ/α and native eCG were 172.4 and 786.6 ng/mL, respectively. The activity of rec-eCGβ/α was higher than that of native eCG. However, signal transduction in the CHO PathHunter Parental cells expressing eelFSHR was not enhanced by stimulation with both agonist rec-eCGβ/α and native eCG. We concluded that rec-eCGβ/α and native eCG were completely active in cells expressing eelLHR, similar to the activity in the mammalian cells expressing LHRs. However, rec-eCGβ/α and native eCG did not invoke any signaling response in the cells expressing eelFSHR. These results suggest that eCG has a potent activity in cells expressing eelLHR. Thus, we also suggest that rec-eCGβ/α can induce eel maturation by administering gonadotropic reagents (LH), such as salmon pituitary extract.