검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Autophagy is an intracellular degradation and recycling system. Oocyte maturation is dynamic process, in which various proteins should be synthesized and degraded. In our previous study, we reported the loci of autophagosome and dynamics of autophagic activity in porcine oocytes during In Vitro maturation. In this study, we verified loci of autophagosome in porcine follicular cumulus-oocyte complex by detection of microtubule-associated protein 1A/1B-light chain 3 (LC3) which is the reliable marker of autophagosome. Porcine ovary including various sizes of follicles was fixed within 1 hour after collection from slaughterhouse. After fixation, immunohistochemistry was conducted on sliced ovary tissue containing various sizes of follicles by using LC3 antibody. As a result, LC3 signal was clearly detected in both cumulus and oocytes of various sizes of follicles. We also found ring shaped signal which represent autophagosome near oocyte membrane. Most of the signals in oocytes were localized nearby cellular membrane while evenly dispersed in cumulus cells. Therefore, this result suggests that autophagy occurs in porcine COCs (cumulus-oocyte complexes) at follicular stage.
        4,000원
        2.
        2016.10 구독 인증기관·개인회원 무료
        Although in vitro production (IVP) techniques of porcine follicular oocytes have progressed and are well studied, the developmental potential of porcine oocytes matured in vitro remains low compared with those matured in vivo. It is well known that one of the reason occurred impair in vitro maturation (IVM) of porcine oocytes is the oxidative stress. Oxidative stress is mainly caused by reactive oxygen species (ROS) generation formed during cellular metabolism. β-cryptoxanthin (BCX) is one of the carotenoid pigment and possesses strong anti-oxidative and free radical scavenging activities and suppresses lipid peroxidation and nitrogen oxide production. The objective of this study was to examine the effects of BCX treatment on porcine oocyte during IVM and their in vitro developmental potential. The follicular oocytes were cultured in IVM medium supplemented with 0, 0.1, 1, 10 and 100 μM BCX (control, 0.1 B, 1 B, 10 B and 100 B). In analysis of intracellular ROS expression level after IVM, 1 B group was the lowest among all groups (p<0.05), while other BCX treated groups are similar to control group. Also, 1 B group was significantly decreased during the classified oocyte maturation stage (GVBD, MⅠ and MⅡ) than control (p<0.05). In addition, the relative mRNA expression level of antioxidant gene (superoxide dismutase-2 and peroxiredoxin-5) was significantly higher in 1 B group than control (p<0.05). After parthenogenetic activation, there was no different in the cleavage rate between two groups, however, the blastocyst formation rate was significantly higher in 1 B group than in control (p<0.05). In embryo quality, the total cell number and DNA fragmentation of blastocysts were no different between two groups. These results demonstrate that BCX is helpful for decreasing ROS level of porcine follicular oocytes and improves their developmental potential.
        6.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to identify a follicular fluid ingredient inhibiting the cumulus oocyte complex (COC) expansion. Thus, follicular fluid or liquid chromatographic fractions of follicular fluid was supplemented in COC culture medium. And COCs were incubated for 48 hours to investigate about cumulus expansion and also the first polar body extrusion. The results obtained were as follows; 1. The fluid of medium follicle significantly inhibited the COC expansion. 2. The fluid of large follicle inhibited the COC expansion. 3. Follicular fluid showed six major fractions at retention volumes (RVs) 1.83, 1.91, 2.15, 2.34, 2.53 and 2.74 ml after separation with Superose 12 column. Of the major fractions, fractions RV2.15, RV2.34, RV2.53 and RV2.74 inhibited both COC expansion and polar body extrusion. Especially, fractions of RV2.15 and RV2.53 significantly inhibited COC expansion, oocyte denudation and polar body extrusion. In conclusion, porcine follicular fluid contained a COC expansion inhibiting ingredient (CEI) that may be contained largely in fractions RV2.15 and RV2.53. And CEI may inhibit oocyte maturation by inhibition of oocyte denudation and extrusion of the first polar body.
        4,000원
        7.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to find out the effect of follicle size and oocyte type on in vitro maturation of poricine follicular oocytes. TCM-HEPEAS medium was used to basic medium, and the oocyte matured in vitro was stained with the Rapid staining method. The results obtained were summarized as follows; 1. The number of follicles an ovary was 20.5. The number of A-and B-typed oocytes an ovary was 2.34. The proportion of A-and b-types oocytes was 40% of the recovery oocytes. 2. Cumulus expanison indexes(CEI) by the follicle size were 1.62∼2.34(<2mm), 1.27∼2.28(2∼5mm) and 1.46∼2.75(>5mm). It was no differ to maturation rate by the follicle size. 3. The degree of oocyte maturation based on oocyte type did not differ for B-and C-typed oocyted but the index of oocyte type A was higher than that of b-and C-typed oocytes. 4. When follicluar oocytes were cultured for 42 hours, the proportion of the Met-II(second metaphase) stage were 22.5% (degree 1), 35.4%(degree 2) and 65.5% (degree 3).
        4,000원
        8.
        1997.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to determine the effect of bovine follicular fluid(bFF), hormones, and fetal bovine serum(FBS) supplemented in the medium on the in vitro fertilization and development of bovine embryos. The ovaries were obtained from a local abattoir and placed in physiological saline kept at 30~32˚C and brought to the laboratory within 3~4 hours. The oocytes and follicular fluid were collected by aspiration from visible follicles, and the oocytes of grades I on the basis of the morphology of cumulus cells attached and the homogeneity of cytoplasmic granules were selected and used for maturation. The basal media used for oocyte maturation, fertilization and embryo development in vitro were Ham' F-10, TALP and TCM-199, respectively. The hormones supplemented in maturation medium were consisted of 35 pg /ml FSH, 10 pg /ml LH and 1 pg/mi estradiol-l7. The bFF collected from 5~9 mm follicles was centrifuged, filtered and inactivated by heat-treatment at 56˚C for 30 min. FBS also was inactivated with the same method and kept at -20˚C until use. The embryos were co-cultured with the monolayer of bovine oviductal epithelial cells at 39˚C under 5% in air for 9 days. The results obtained were summarized as follows: The fertilization rate of oocytes was found 87.4% from 10% FBS and hormones treatment for IVM, and 37.1% of these TVF embryos were developed to blastocyst stage in 10% FBS groups. Compared with this control system, the fertilization rate was decreased significantly(P<0.05) in the maturation without either FBS or hormones. These IVF embryos were developed to morula stage at the similar rate, but to blastocyst at significantly(P<0.05) lower rate in the embryo culture with or without FBS supplementation. The fertilization rate(82.9%) in hormones and 10% inactivated bFF was similar with 10% FBS and hormone groups(87.4%), but decreased significantly(P<0.05) in 20 or 30% bFF (61.0 or 66.0%), respectively. In vitro developmental competence to blastocyst stage in 10% FBS and 20% inactivated bFF(37.1% and 31.4%) was higher than in 10 or 30% inactivated bFF(20.0 or 19.2%) or 10, 20 and 30% fresh bFF(19.1, 21.0 and 17.5%) The results indicated that the in vitro fertillzation and development rate of the embryos should be improved in 10% FBS or 20% inactivated culture system and 20% inactivated bFF might be available economically for bovine oocyte maturation and embryo culture instead of fetal bovine serum.
        4,000원
        9.
        1997.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to produce in vitro fertilized embryos with immature follicular oocytes collected by transvaginal aspiration from Holstein cows. A simple aspiration apparatus consists of two stainless steel tubes, an inner tube (needle holder; 1.2cmdiameter, 55cm long) and an outer tube (1.5cm diameter, 4Scm long), and a hand-operated vacuum pump was used. Under epidural anesthesia, the needle guide was passed into the vagina of the cow to a point next to the cervix. An ovary was placed against the wall of the vagina over the end of the aspiration needle by rectal manipulation. As the needlepassed into the ovary, an assistant was asked to apply vacuum(l00mrnHg) and the ovary was manipulated back and forth in all directions over the needle. When all sites of the ovary was aspirated, the needle was withdrawn and the needle guide was moved to the other side of ovary and the procedure was repeated. When the oocyte aspiration procedure was finished, collected fluid was transported to laboratory. Oocytes surrounded with at least 1 layer of cumulus cells were matured, fertilized and cultured in vitro. The results were as follows; Ninety seven oocytes were collected by transvaginal aspiration from seventeen Holstein cows(5.7 /head). The number of oocytes surrounded with at least 1 layer of cumulus cells were 60(61.9%). Following in vitro maturation, fertilization and culture, the cleavage and development rate to morula+blastocyst were 83.3% and 30.0%, respectively. From this study, transferable in vitro fertilized embryos could be produced with imma- ture follicular oocytes collected by transvaginal aspiration from Holstein cows using a simple aspiration apparatus
        4,000원
        13.
        2003.09 서비스 종료(열람 제한)
        The birth of the clone animals is influencing the frontier of research of animal biotechnology. It has effects on research of animal biotechnology itself by necessitating setting of new research subjects, modifications of the strategy of ongoing research projects, and challenges to schemes formerly considered impossible. In my talk, such topics including mass production of fertile ova and oocyte maturation will be discussed. (1) Oocytes are needed for the production of a clone by nuclear transplantation. Mitochondrial DNA inherited via the oocyte are involved also in the morphogenesis. Therefore, oocytes from the same animal must be used as recipients to produce genuine clones by nuclear transplantation. Experimenting on the assumption that selective oogenesis can be avoided, and apoptosis of oocytes can be prevented, by using ovarian angiogenic factos will be introduced. (2) It is important to clarify the factors of oocytes involving in reprogramming of somatic cells. Such factors are thought to be expressed in oocytes during oogenesis and oocyte maturation. Therefore, molecular mechanisms of oogenesis and oocyte maturation must be clarified extensively. Topics in this field including our recent advances will be discussed. (중략)
        14.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        대부분의 포유동물에서 수란관내로 배란된 난자는 정자에 의해 수정이 된 후 개체발생을 시작한다. 그러나 수정이 되지 못한 난자들은 난구세포와 함께 수란관내에서 퇴화하여 제거되는데, 그 기작에 대해서는 구체적으로 알려져 있지 않다. 따라서 본 연구는 포유동물의 수란관내 물질이 난자-난구 복합체에 미치는 영향을 알아보고자 사람의 난포액과 소의 수란관 조직 추출액을 생쥐의 난자-난구 복합체에 처리하고 난자의 생존율 및 난구세포의 세포자연사(apoptosis)를