This study evaluated the virucidal efficacy of a chlorine dioxide (ClO2) gas-generating fumigation disinfectant consisting of sodium chlorate solution (25% sodium chlorate) and reaction solution against avian influenza virus (AIV). After AIV suspensions had been deposited on stainless steel carriers, the 9 dried carriers were exposed to the fumigant (sodium chlorate solution: 8.5, 17, 34, 50, and 100 mL) in a 25-m³ test room for 2, 3, and 4 h, respectively. Thereafter, all carriers were submerged in a neutralizing solution (20% fetal bovine serum) to scrape off the surviving viruses, and the respective suspensions were diluted. Each diluent was inoculated into the allantoic membrane of five 10-day-old embryos. After incubation for 5 days at 37℃, AIV viability in the collected allantoic fluids was examined, and the egg infectious dose 50 (EID50) was calculated. When the carrier was exposed to ClO2 gas generated from reacting 34 mL of the fumigant for 3 h, the AIV titer reduced by more than 104.0 EID50/carrier compared to the control, which was exposed to the fumigant without inoculation of AIV suspension. In addition, the control was non-toxic to the embryos.
As global warming and consumer’s preference for tropical/subtropical fruits increase, the number of orchards cultivating tropical/subtropical fruits in Korea is increasing. Accordingly, concerns about the introduction of exotic invasive pests that host tropical fruits. In this study, efficacy of ethyl formate(EF), as alternative to methyl bromide(MB), was evaluated. Commercial trial of EF was conducted in mango post-harvest storage conditions for controlling Scirtothrips dorsalis. Application of 10 g/m3 of EF for 4 hours at 10 ℃ showed proven efficacy on S. dorsalis without any phytotoxic damage on mango fruits in that condition.
Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection (LOD) of the method was 100 ng g-1 and the limit of quantitation (LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.
본 연구는 식물검역 분야에서 주요하게 사용되고 있는 메틸브로마이드 훈증제로 인해 발생하는 약해를 저감하기 위한 물질을 모델식물인 애기장대를 이용하여 스크리닝하였다. 사전연구를 통하여 메틸브로마이드 훈증제의 식물 독성 메커니즘으로 활성산소발생와 식물 성장 호르몬인 옥신의 식물체 내 분배억제효과가 발생하는 것을 바탕으로 하여, 약해 저감물질후보군으로 활성산소를 제거하는 역할을 하는 ROS scavenger 2종 (NAC, GSH)과 옥신을 훈증제 처리 전 애기장대에 처리한 후 약해의 저감 정도를 육안평가와 더불어 관련 유전자의 발현을 확인하였다. 연구 결과 메틸브로마이드에 의해 유도된 약해는 옥신보다는 활성산소를 저감시키는 물질후보군들에서 약해 저감효과가 나타났다. 이 중 GSH을 이용하여 농도구배하여 전처리하였을 때, 5 mM GSH 전처리 후 메틸브로마이드 훈증 시 약해 저감효과가 두드러졌다. GSH 전처리 시 식물체 내에 MBF1c와 HSP70 유전자 발현이 증가하는 것을 확인하였으며, 이는 메틸브로마이드 훈증으로 유도되는 약해를 방어하는 역할을 담당하였을 것이라고 평가된다. 따라서, 식물검역 훈증제 메틸브로마이드에 의해 발생하는 약해를 저감하는 데 GSH의 사용가능성을 평가하였으며, 이를 기반으로 다양한 식물체에 적용하여 수출입 시 약해로 인한 경제적 손실을 감소시킬 수 있기를 기대한다.