I-129 is one of the imporant nuclides that must be determined in the disposal process of radioactive waste in many countries. This radionuclide emits gamma-ray and x-ray photons within the energy range of 29 to 39 keV, consequently, an x-ray detector with high resolution performance is required for the analysis of I-129 activity. An n-type coaxial HPGe detector exhibits higher efficiency characteristics compared to a planar-type HPGe detector, however, its resolution is lower than a planar type. So it is difficult to completely deconvolute and fit the gamma-ray and xray peaks in the spectrum using a general gamma-ray spectrum analysis program such as GammaVision. To address this problem, in a previous study introduced the developed algorithm for the fitting and analysis of I-129 gamma-ray and x-ray spectum by fixing their emission ratios. In this study, we improved the algorithm by considering the variation of the efficiency in the HPGe spectrum, which reflects the actual HPGe crystal condition. And algorithm tests were performed using measured I-129 sample spectra with interfering nuclides acting as background curve are introduced.
Plastic scintillators can be used to find radioactive sources for portal monitoring due to their advantages such as faster decay time, non-hygroscopicity, relatively low manufacturing cost, robustness, and easy processing. However, plastic scintillators have too low density and effective atomic number, and they are not appropriate to be used to identify radionuclides directly. In this study, we devise the radiation sensor using a plastic scintillator with holes filled with bismuth nanoparticles to make up for the limitations of plastic materials. We use MCNP (Monte Carlo N-particle) simulating program to confirm the performance of bismuth nanoparticles in the plastic scintillators. The photoelectric peak is found in the bismuth-loaded plastic scintillator by subtracting the energy spectrum from that of the standard plastic scintillator. The height and diameter of the simulated plastic scintillator are 3 and 5 cm, respectively, and it has 19 holes whose depth and diameter are 2.5 and 0.2 cm, respectively. As a gamma-ray source, Cs-137 which emits 662 keV energy is used. The clear energy peak is observed in the subtracted spectrum, the full width at half maximum (FWHM) and the energy resolution are calculated to evaluate the performance of the proposed radiation sensor. The FWHM of the peak and the energy resolution are 61.18 keV and 9.242% at 662 keV, respectively.
In gamma-ray spectrometry for volume samples, the self-attenuation effect should be considered in the case of differences in chemical composition and density between the efficiency calibration source for quantitative analysis of sample and the sample actually measured. In particular, the lower the gamma-ray energy, the greater the gamma-ray attenuation due to the self-attenuation effect of the sample. So, the attenuation effect of low-energy gamma-rays in the sample should be corrected to avoid over- or under-estimation of its radioactivity. One of the most important factors in correcting the self-attenuation effect of the sample is the linear attenuation coefficient for the sample, which can be directly calculated using a collimator. The larger the size of the collimator, the more advantageous it is to calculate the linear attenuation coefficient of the sample, but excessive size may limit the use of the collimator in a typical environmental laboratory due to its heavy weight. Therefore, it is necessary to optimize the collimator size and structure according to the measurement environment and purpose. This study is to optimize a collimator that can determine the effective linear attenuation coefficient of low-energy gamma-rays, and verify its applicability. The overall structure of the designed collimator was optimized for gamma-ray energy of less than 100 keV and cylindrical plastic bottle with diameter of 60 mm and a height of 40 mm. The materials of optimized collimator consisted of tungsten. Acryl and acetal were used to form the housing of the collimator, which fixes the central axis of the bottle, collimator and point-like source. In addition, using the housing, the height of the tungsten is adjusted according to the height of the sample. For applicability evaluation of the optimized collimator, IAEA reference material in solid form were used. The sample was filled in the bottle with heights of 1, 2, 3 and 4 cm respectively. Using the collimator and point-like source of 210Pb (46.5 keV), 241Am (59.5 keV), and 57Co (121.1 keV), the linear attenuation coefficient and the radioactivity for the samples were calculated. As a result, to calculate the linear attenuation coefficient using the optimized collimator, a relatively high sample height is required. However, the optimized collimator can be used to determine the linear attenuation coefficients of low-energy gamma-rays for the self-attenuation correction regardless of the sample height. It is concluded that the optimized collimator can be useful to correct the sample selfattenuation effect.
Gamma spectrometry is one of the main analysis methods used to obtain information about unknown radioactive materials. In gamma-ray energy spectrometry, even for the same gamma-ray spectrum, the analysis results may be slightly different depending on the skill of the analyst. Therefore, it is important to increase the proficiency of the analyst in order to derive accurate analysis results. This paper describes the development of the virtual spectrum simulator program for gamma spectrometry training. This simulator program consists of an instructor module and trainee module program based on an integrated server, in which the instructor transmits a virtual spectrum of arbitrarily specified measurement conditions to the students, allowing each student to submit analysis results. It can reproduce a virtual gamma-ray energy spectrum based on virtual reality and augmented reality technique and includes analysis function for the spectrum, allowing users to experience realistic measurement and analysis online. The virtual gamma-ray energy spectrum DB program manages a database including theoretical data obtained by Monte Carlo simulation and actual measured data, which are the basis for creating a virtual spectrum. The currently developed database contains data on HPGe laboratory measurement as well as in-situ measurements (ground surface, decommissioned facility wall, radiowaste drum) of portable HPGe detectors, LaBr3(Ce) detector and NaI detector. The analysis function can be applied not only to the virtual spectrum, but also to the input measured spectrum. The parameters of the peak analysis algorithm are customizable so that even low-resolution spectra can be properly analyzed. The validity of the database and analysis algorithm was verified by comparing with the results derived by the existing analysis programs. In the future, the application of various in-situ gamma spectrometers will be implemented to improve the profiling of the depth distribution of deposited nuclides through dose rate assessment, and the applicability of the completed simulator in actual in-situ gamma spectrometry will be verified.
To obtain the gamma-ray energy spectrum of artificial radionuclides which is difficult to obtain practically, virtual gamma-ray energy spectrum simulator program was developed. It can be applied for the predetermined measurement condition for which the database was developed through computational simulation and actual measurement of background radiation. For gamma spectrometry training for KHNP HPGe detectors using this program, the database for KNPG HPGe detectors was developed. First, the geometry of the detector in the simulation was adjusted to resemble the real structure by comparing the actually measured net counts rate at the main gamma peak with the value simulated by MCNP6. The Certified Reference material (CRM) of 137Cs and 60Co were used for verification. The comparison was made with respect to the situation where CRM was attached to the top and side of the detection part of the considered detector. The geometry structures of detectors were simulated by reflecting the design drawing of the products, and the simulation was performed for several thicknesses of the Ge/Li dead layer in consideration of the change in the thickness over time. As the results, the simulation geometry was tuned so that the results for 137Cs showed a difference within 10% for all detectors. At this time, in some detectors, the result for 60Co shows a 10% higher error, which is estimated to be due to the random summing. It was not considered in tuning the simulation geometry, but it was found that improvements were needed to reflect the coincidence summing when construction the virtual spectrum in the future. The determined simulation geometry was applied to generate theoretical gamma-ray energy spectra of representative artificial radionuclides. In order to create a virtual spectrum similar to the real one, the background spectrum was measured for each detector without a source, and the simulation results were calculated in the form of having the same energy channel as the background spectrum. The background spectrum and theoretical spectra of artificial radionuclides for each detector were databased so that virtual spectra could be generated under desired conditions. The virtual spectrum was generated by adding a background spectrum and a spectrum obtained by multiplying the spectrum of the desired nuclide by the concentration of the nuclide. The validity of generated virtual spectra was verified using the pre-developed gamma spectrometry program. As a results of gamma spectrometry of virtual spectra, the virtual spectra was verified by showing a difference within 20% from the radioactivity value input when generating the virtual spectra.
An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.
동경공업대학교의 3MV 펠레트론가속기를 사용하여 10에서 90keV 영역에 대하여 197 Au의 중성자포획 스펙트럼을 측정하였다. 중성자 펄스빔은 7Li(p,n)7 Be반응을 통하여 발생되었다. 사용되어진 양성자 빔 의 폭은 1.5-ns였다. 금 시료에 입사된 중성자의 에너지 스펙트럼은 6 Li-glass 섬광검출기의 중성자 비행 시간법을 사용하여 측정하였다. 금 시료의 중성자포획에 의해서 발생된 감마선은 anti-Compton NaI(TI) 검출장비를 사용하여 측정되었다. 본 연구에서는 5개의 중성자 에너지 역영을 선택했고, 각각의 에너지 영역에서 얻어진 감마선파고스펙트럼을 표시하였다. 본 연구에서 얻어진 스펙트럼은 처음으로 얻어진 결과이며, 중성자 결합에너지부근에 몇 개의 천이 피크가 보인다.