검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, in order to increase the oxidation resistance of graphite, kaolin and alumina powder with different ratios (26A-74S, 49A-51S, 72A-28S) and slurry method were used to create an aluminosilicate coating on the graphite substrate. In order to reduce the difference in the coefficients of thermal expansion of graphite with aluminosilicate coating, aluminum metaphosphate coating as an interlayer was prepared on the surface of graphite by cathodic electrochemical treatment. The isothermal oxidation test of the samples was carried out in air at a temperature of 1250 °C for 1, 3 and 5 h. The microstructure, chemical composition, and phase components of the coating were, respectively, analyzed by scanning electron microscope equipped with an energy-dispersive spectrometer and X-ray diffraction. The results indicated that, by increasing the withdrawal speed of the samples in slurry method, the amount of changes in the weight of the samples has increased and therefore had a direct effect on oxidation. In addition, it was approved that, at high-temperature oxidation, AlPO4 glass phase forms on aluminum metaphosphate interlayer which retards graphite oxidation. Along with aluminum metaphosphate, aluminosilicate coating also produces a glass phase which fills and seals the voids on the surface which prevents the oxygen to reach the surface of graphite. The created double-layer coating including an interlayer of aluminum metaphosphate + slurry coating prepared with the ratio of 26A-74S as the optimal coating in this research was able to increase the oxidation resistance of graphite by 73% at a temperature of 1250 °C.
        4,600원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As frontier materials, graphene oxide (GO) and graphene have penetrated almost all research areas and advanced numerous technologies in sensing, electronics, energy storage, catalysis, water treatment, advanced composites, biomedical, and more. However, the affordable large-scale synthesis of high-quality GO and graphene remains a significant challenge that negatively affects its commercialisation. In this article, firstly, a simple, scalable approach was demonstrated to synthesise high-quality, high yield GO by modifying the improved Hummers method. The advantages of the optimised process are reduced oxidation time, straightforward washing steps without using coagulation step, reduction in cost as eliminating the use of phosphoric acid, use of minimum chemical reagents, and increased production of GO per batch (~ 62 g). Subsequently, the produced GO was reduced to reduced graphene oxide (rGO) using three different approaches: green reduction using ascorbic acid, hydrothermal and thermal reduction techniques. The GO and rGO samples were characterised using various microscopy and spectroscopy techniques such as XRD, Raman, SEM, TEM, XPS and TGA. The rGO prepared using different methods were compared thoroughly, and it was noticed that rGO produced by ascorbic acid reduction has high quality and high yield. Furthermore, surface (surface wettability, zeta potential and surface area) and electrical properties of GO and different rGO were evaluated. The presented synthesis processes might be potentially scaled up for large-scale production of GO and rGO.
        4,900원
        3.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about 3.38~3.39a. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.
        4,000원
        4.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.
        4,000원
        5.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal emissivity of commercial nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) following changes in oxidation degrees were examined. Specimens were oxidized to 0%, 5%, and 10% in air flow of 5l/min at 600℃ using a furnace, and the thermal emissivities were measured using an infrared spectrum analyzer. The measuring temperatures for the thermal emissivity were 100℃, 200℃, 300℃, 400℃ 500℃. Also density and porosity of the specimens were observed to compare with thermal emissivity. Results showed that emissivity increased with oxidation, and the 10% oxidized NBG-18 showed the highest emissivity (0.890) which value is larger for 24% than the value of as-received specimen. Investigation of factors affecting the emissivity revealed that increases in the surface roughness and porosity due to oxidation were responsible for the increase in emissivity after oxidation.
        4,000원
        6.
        2008.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphite for the nuclear reactor is used to the moderator, reflector and supporter in which fuel rod inside of nuclear reactor. Recently, there are many researches has been performed on the various characteristics of nuclear graphite, however most of them are restricted to the structural and the mechanical properties. Therefore we focused on the thermal property of nuclear graphite. This study investigated the thermal emissivity following the oxidation degree of nuclear graphite with IG-11 used as a sample. IG-11 was oxidized to 6% and 11% in air at 5 l/min at 600˚C. The porosity and thermal emissivity of the sample were measured using a mercury porosimeter and by an IR method, respectively. The thermal emissivity of an oxidized sample was measured at 100˚C, 200˚C, 300˚C, 400˚C and 500˚C. The porosity of the oxidized samples was found to increase as the oxidation degree increased. The thermal emissivity increased as the oxidation degree increased, and the thermal emissivity decreased as the measured temperature increased. It was confirmed that the thermal emissivity of oxidized IG-11 is correlated with the porosity of the sample.
        4,000원
        7.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at 600℃, based on the sample of ASTM C 1179-91.
        4,000원