PURPOSES : This study analyzed the amount of fuel consumption and atmospheric emissions by type of asphalt concrete mixtures. METHODS : Asphalt concrete mixture was produced directly at the plant, fuel consumption was measured compared to daily production, and atmospheric emissions emitted during the production process were measured. Hot and warm asphalt mixtures were produced, and analyses were conducted according to weather conditions and production volume. RESULTS : The fuel use per ton was confirmed to reduce energy by approximately 23.5% in WMA compared to HMA due to differences in the production temperature during the production of asphalt mixtures. Additionally, HMA production yielded 1.6 times higher atmospheric emissions for CO2 and 3.8 times higher for NOx than that for WMA, indicating that CO2 and NOx emissions tended to increase as fuel consumption increased. CONCLUSIONS : When producing asphalt mixtures, the production temperature, production volume, atmospheric conditions, and site conditions have a significant impact on fuel usage and atmospheric emissions.
PURPOSES : This study was performed to evaluate the short-term aging (SA) protocols of the normal hot-mix asphalt (HMA) mixture, to explore problems, and to suggest proper procedures based on fundamental principles of SA in terms of the SA temperature (T) and length of time (Lt) in existing specifications in several countries including Korea.
METHODS : As the SA in our lab is a simulation of field SA, which is an inevitable procedure occurring naturally in the current field practice, major SA guidelines of foreign countries and Korea were reviewed to investigate problems that showed discrepancies with field practice. The aging quantity (Aq) model was introduced as a function of T and Lt, based on the correlation with absolute viscosity (AV) to estimate Aq by T and Lt. The normal SA (NSA) was suggested through an example procedure inducing binder aging level similar to the RTFOtreated binder AV or Aq. Based on the NSA Aq level, lower, proper, or higher SA conditions were discovered from the existing SA guidelines.
RESULTS : As Aq has excellent correlation with AV, the proper T and Lt for NSA as an example was suggested based on the AV of RTFOtreated binder to induce an Aq range of 19,000-25,000 min.℃. It was found that there were several problems in the existing guidelines in USA and Korea. These included lower T, shorter or longer Lt, and air blowing or stirring the mix during SA, which were not matched with the practical condition of loaded HMA mixtures that were short-term aged under hot temperatures in trucks.
CONCLUSIONS : It was concluded that there are several problems in the current SA guidelines, which do not provide proper HMA temperature to mixtures for proper (modal) length of time. Therefore, these guidelines should be reevaluated carefully and revised based on the fundamental field SA principle. The NSA condition should be suggested using proper HMA T and modal Lt for better simulation of field SA practice.
PURPOSES: It is theoretically well known all over the world, that porous hot mixed asphalt (HMA) with hydrated Lime improves moisture and rutting resistance, and reduces pothole occurrence frequency, as well as the life cycle cost (LCC).
METHODS : Addictive in the two different formations of the liquid anti-stripping Agent and powder Hydrated-Lime was applied in this investigation in order to obtain relatively clear results according to their types and conditions. Firstly, the moisture conditions were set, and applied to the porous HMA mixtures with hydrated lime (anti-stripping agent). Next, it was followed by a non-destructive test with the application of three freeze-thaw cycles, which were individually carried out thrice to compare the results of the dynamic moduli. Lastly, the hydrated lime effect related to moisture sensibility to porous HMA has been verified through the analysis of the modulus results regarding the change rate of dynamic modulus per n-cycle.
RESULTS: It is clear from this investigation, that the dynamic modulus is inversely proportional to the change in temperature, as the graph representing the rigidity of the thermorheologically simple (TRS) material showed gradual decline of the dynamic modulus with the increase in temperature.
CONCLUSIONS: The porous HMA mixture with the anti-stripping agent (hydrated Lime) has been found to be more moisture resistant to freezing and thawing than the normal porous HMA mixture. It is clear that the hydrated lime helps the HMA mixture to improve its fatigue resistance.
PURPOSES: A tack coat has been utilized to increase the bond performance between the surface layer and base course (intermediate course) at various road pavement sites. This is similarly true in other nations. Based on this connection, the objective of the present study is to evaluate the properties of hot mix asphalt (HMA) mixtures with an RSC-4 or BD-Coat and determine the application rate of the tack coat.
METHODS: The HMA specimens were manufactured using superpave gyratory compaction. The HMA mixtures were composed of a 5-cm thick surface layer and a 10-cm thick base course. An impact hammer resonance test (IHRT) and a static load shear test were conducted to evaluate the performance of the HMA mixtures with a tack coat. From these tests, the dynamic moduli related to the high-frequency resistance and interlayer shear strength (ISS) of HMA could be obtained.
RESULTS: The results of the dynamic moduli of HMA are discussed based on the resonance frequency (RF). To check the accuracy of the IHRT, we conducted a coherence analysis. A direct shear test using the application of a static load test was carried out to evaluate the interlayer shear strength (ISS) of HMA.
CONCLUSIONS: The maximum ISS was demonstrated at an RSC-4 application rate of 462 gsm, and the maximum dynamic modulus was demonstrated at an RSC-4 application rate of 306 gsm. By averaging the results of the ISS, the maximum ISS values were obtained when a BD-Coat application rate of 602 gsm was applied.
아스팔트 콘크리트 포장은 많은 곳에서 쓰여지는 것을 볼 수 있다. 도심지 도로, 고속도로, 주차장, 그리고 자전거 도로에 이용되고 있다. 사용재료의 성질을 보면 비교적 온도에 민감한 재료로 분류될 수 있다. 여름철에는 유연한 성질을 보여주고 있고 겨울철에는 강성의 성질을 보여주고 있다. 포장관리의 측면에서는 손상된 부분에 대해서는 비교적 쉽게 보수할 수 있는 점을 들 수 있다. 그리고 일반적인 아스팔트 포장의 색깔은 검정과 회색으로 구성되어 있음을 알 수 있는데 이들 아스팔트 포장은 다양한 칼라로 표현할 수 있는데 크게 두 가지의 방법으로 칼라포장을 시공할 수 있다. 첫 번째로 시멘트 형태의 칼라도료를 아스팔트 포장에 칠하는 방법으로 도료가 벗겨지는 것을 방지하기 위해서는 주위를 요하는 시공이 요구된다. 두 번째의 방법은 칼라 첨가제를 이용한 칼라 아스팔트 시공을 들 수 있다. 본 방법은 원하는 아스팔트 층에 대해 전체적으로 색을 입히는 방법으로 장점으로는 일반적으로 쓰고 있는 혼합물 배합설계를 이용할 수 있다는 점이다. 단점으로는 주로 빨간색 그리고 갈색으로만 색깔을 표현할 수 있는 것이다. 본 연구에서는 제시된 첨가제를 이용하여 영구변형, 수분민감도 및 피로균열에 대한 공용성을 평가하고자 한다.
본 연구는 재활용 아스팔트 혼합물의 역학적 특성과 재생혼합물 내 바인더의 대형분자(Large molecular size : LMS)와의 상관성을 조사하였다. 재생 혼합물은 여러 가지 혼합 방법으로 제작하여 역학적 강도 시험을 수행하였고 재생혼합물 내의 RAP 굵은골재(R), 매트릭스(M) 및 신규 굵은골재(V) 시료에 코팅된 바인더의 노화 상태를 gel-permeation chromatography(GPC)를 통해 조사하였다. 재생혼합물 내 바인더의 노화상태 분석을 위한 혼합물 제조에는 원형골재 (13mm 강자갈)가 굵은골재로 사용되었다. GPC를 통한 재생혼합물 내 바인더의 노화상태를 분석한 결과 신 구 바인더의 노화 정도에 차이를 확인했으며, 혼합 방법에 따라 재생혼합물의 바인더 노화 상태가 서로 상이함을 확인하였다. 역학적 강도 특성과 R, M, V시료의 LMS에 대한 상관성분석결과 재생혼합물의 역학적 특성이 혼합물 내의 재료 중 어느 특정 재료의 바인더 LMS와 더 밀접한 상관관계를 보였다. 또한 LMS가 어느 정도 증가될 때까지는 강도특성이 향상되나 LMS가 보다 더 커지면 강도성능이 저하되는 경향을 보여 혼합물 제조시 제대로 회복되지 못한 노화된 아스팔트가 향후 노화가 더욱 진행되면 재생혼합물의 강도 성능이 저하될 것으로 판단되었다.