Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.
This study investigated the genes involved in the dif- ferentiation of odontoblasts derived from human dental pulp stem cells (hDPSCs). hDPSCs isolated from human tooth pulp were validated by fluorescence activated cell sor- ting (FACS). After odontogenic induction, hDPSCs were analyzed investigated by Alizaline red-S staining, ALP assay, ALP staining and RT-PCR. Differential display-poly- me rase chain reac tion (DD-PCR) was pe rformed to s c re en differentially expressed genes involved in the differentia- tion of hDPSCs. By FACS analysis, the stem cell markers CD24 and CD44 were found to be highly expressed in hDPSCs. When hDPSCs were treated with agents such as β- glycerophosphate (β-GP) and ascorbic acid (AA), nodule formation was exhibited within six weeks. The ALP activity of hDPSCs was found to elevate over time, with a detectable up-regulation at 14 days after odontogenic induc- tion. RT-PCR analysis revealed that dentin sialophospho- protein (DSPP) and osteocalcin (OC) expression had inc- reased in a time-dependent manner in the induction culture. Through the use of DD-PCR, several genes were diffe- rentially detected following the odontogenic induction. These results suggest that these genes may possibly be linked to a variety of cellular process during odontogenesis. Further-more, the characterization of these regulated genes during odontogenic induction will likely provide valuable new in- sights into the functions of odontoblasts.
Dlx3 and Dlx5 are homeobox domain proteins and are well-known regulators of osteoblastic differentiation. Since possible reciprocal relationships between osteogenic and adipogenic differentiation in mesenchymal stem cells exist, we examined the regulatory role of Dlx3 and Dlx5 on adipogenic differentiation using human dental pulp stem cells. Over-expression of Dlx3 and Dlx5 stimulated osteogenic differentiation but inhibited adipogenic differentiation of human dental pulp stem cells. Dlx3 and Dlx5 suppressed the expression of adipogenic marker genes such as C/EBPα, PPARγ, aP2 and lipoprotein lipase. Adipogenic stimuli suppressed the mRNA levels of Dlx3 and Dlx5, whereas osteogenic stimuli enhanced the expression of Dlx3 and Dlx5 in 3T3-L1 preadipocytes. These results suggest that Dlx3 and Dlx5 exert a stimulatory effect on osteogenic differentiation of stem cells through the inhibition of adipogenic differ¬entiation as well as direct stimulation.