해수 속의 용존 유기·무기물과 플랑크톤 등의 상호 작용은 해수의 색과 광학적 특성을 결정한다. 동중국해에 위치한 이어도 해양과학기지(I-ORS) 주변의 해역은 서쪽으로 양자강 저염수, 남쪽으로 대마 난류에 영향을 받아 한반도 주변의 해수 순환과 광특성 변동 연구에 적합하다. 본 연구에서는 MODIS/Aqua로 관측한 위성 원격 반사도와 NOMAD 실측 원격 반사도를 이용하여 2016년 1월부터 2020년 12월까지 I-ORS 주변의 해수의 원격반사도를 스펙트 럼 특성에 따라 23가지의 유형으로 분류하였으며, 이어도 해양 과학기지 주변 해역(d ≤ 10 km)의 위성 일치점 자료 59,532개를 이용하여 연구 해역 수형의 계절 변동 특성을 제시하였다. 각 관측 지점에서의 원격 반사도 스펙트럼은 분 광 각도법을 이용하여 기준 스펙트럼과의 유사도를 비교함으로써 가장 근접한 기준 수형으로 분류 하였으며 분광 유사 도가 10o 이내일 때만 유의미하다고 판단하였다. 연구 기간내 I-ORS 주변 해역에서는 상대적으로 맑은 해역에서 잘 나 타나는 수형이 50% 이상으로 가장 빈번하게 관측되었다. 계절별 수형의 도수분포에서 여름과 겨울의 분포 양상이 다르 게 나타났고, 특히 여름에는 맑은 해수에서 주로 나타나는 7 이하의 수형이 주로 출현한 반면에 겨울에는 전체 4% 미 만으로 존재하였다. I-ORS 주변을 비롯한 동중국해의 수형의 공간 분포 특성을 고려할 때 I-ORS는 해수 수형의 전이 대에 위치한 것으로 판단된다. 본 연구는 한반도 연안에서의 수형 변동을 분석함으로써 해수의 광학 특성 이해을 이해 하고 인공위성 해색 변수의 정확도 향상을 위한 토대 마련에 기여할 것으로 기대된다.
여름철 장강 저염수의 확장은 북부 동중국해의 환경 및 식물플랑크톤 다양성과 군집구조에 영향을 미치는 주요 요인으로 알려져 있다. 2020년 하계는 장강 저염수의 방류량이 매우 높았던 시기로 환경 특성 변화에 따라 식물플랑크톤 다양성 및 군집구조에 미치는 동력을 이해하기 위해 현장관측을 수행하였다. 2020년 8월 16일~17일 이어도호 승선조사와 2020년 8월 15일~21일 이어도 해양과학기지(IORS)에서 체 류조사를 실시하였다. 조사 정점들에서 CTD로 측정한 결과 조사 수역 남서쪽은 장강 저염수의 영향을 받아 염분이 낮고 엽록소 형광값이 높 았으며, 대마난류의 영향을 받은 남동수역은 염분이 높고 엽록소 형광값이 낮았다. 12개 정점의 표층수 시료의 엽록소 a 농도는 미소형(20~3 μm) 및 소형(> 20 μm) 식물플랑크톤의 생체량이 우점함을 나타냈으며, 대마난류수의 영향을 받은 정점에서만 초미소 식물플랑크톤(< 3 μm) 생체량이 약 50%를 차지하였다. 이러한 표층수의 식물플랑크톤 크기 분포는 영양염류 공급과 관련되어 장강 저염수의 높은 질산염 공급을 받는 정점들은 소형 식물플랑크톤의 생체량 기여율이 높았다. 형태분류 결과 미소형 및 소형 식물플랑크톤은 총 45종이며, 이들 중 우점 분 류군은 규조류인 Guinardia flaccida, Nitzschia spp.와 와편모조류인 Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, Tripos furca 등이었다. 대마난류의 영향을 받으며 질산염 농도가 낮은 정점들은 광합성 초미소 진핵생물(PPE)의 개 체수와 광합성 초미소 원핵생물(PPP)인 Synechococcus의 개체수가 높았다. 질산염/인산염 비는 대부분 정점에서 인산염 제한을 받고 있음을 나타냈다. 유세포 분석 결과 Synechococcus 개체수는 난류의 영향을 받는 빈영양 수역의 정점들에서 높은 개체수를 보였다. NGS 분석 결과 PPP 중 Synechococcus는 29개의 clades가 나타났고, 이 중 한 시료에서 한 번이라도 1% 이상의 우점율을 보인 clade는 11개로 나타났다. 표층수 에선 clade II가 우점분류군이었으며 SCM 층에서 다양한 clades(I과 IV 등)가 차우점군들로 분포하였다. Prochlorococcus 속은 난류 수역에서 high light adapted 생태형이 출현하는 양상을 보였으며 북쪽 수역에선 출현하지 않았다. PPE는 총 163개의 높은 operational taxonomic units (OTUs) 다양성을 보였으며, 이 중 한 시료에서 한 번이라도 5% 이상의 우점률을 나타낸 OTU는 총 11개였다. 장강 저염수의 영향을 받는 정 점의 표층수에선 Amphidinium testudo가 우점 분류군이었으며, SCM 층에서 녹조류가 최우점하였다. 대마난류의 영향을 받는 해역에서는 다양 한 분류군의 착편모조류가 우점하였다. IORS에서의 관측 결과도 주변 정점들과 식물플랑크톤 생체량, 크기분포, 다양성에서 유사한 수준을 나타냈다. 이번 연구 결과는 장강 저염수의 영향에 따른 식물플랑크톤의 반응을 다양한 분야에서 확인할 수 있었다. 또한, IORS와 승선조사 를 비교하여 IORS 관측이 장강 저염수의 식물플랑크톤 동적 역학 모니터링에 활용할 수 있음을 확인하였다. 향후 기후변화에 따라 나타날 동중국해 하계 환경 및 생태계의 변화에 대비하여 IORS의 효과적 이용 방안 수립이 필요할 것으로 판단된다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM) 와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측 자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유 의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
해양환경과 기상연구 거점으로서의 중요성에도 불구하고, 수중에 잠긴 화산섬, 이어도의 퇴적물과 해양지질학적 연구는 부족하다. 이 연구의 목적은 이어도 해저에 분포하는 퇴적물의 종류와 분포양상, 그리고 그 퇴적물의 기원지를 밝히는 것이다. 이를 위해 이어도와 그 주변에서 박스코어러를 사용하여 25점의 표층퇴적물을 획득하였으며, 퇴적물 입도분석과 XRD 점토광물 분석을 수행하였다. 이어도의 정봉은 북부에 존재하며, 남부는 파식대지가 나타난다. 따라서 화산체의 남부는 파랑에 의한 침식작용으로 사라지고, 북부에 일부만 살아남은 것으로 해석된다. 입도분석결과, 패각과 산호편을 포함하는 자갈과 모래 퇴적물은 이어도 화산체와 파식대지에 주로 분포하며, 니질 퇴적물은 이어도 주변해역의 깊은 곳에 나타난다. 점토광물은 일라이트가 대부분을 차지하며, 녹니석과 카올리나이트 순으로 풍부하다. 삼각도표에 도시한 결과, 세립질 퇴적물은 모두 양쯔강(장강) 기원 영역에 도시되었다. 결과적으로 조립질의 자갈과 모래 퇴적물은 이어도 화산체의 풍화침식의 산물과 서식 생물의 골격, 껍질로서 운반과 퇴적과정에서 파랑이 주요한 역할을 한 것으로 해석되며, 반면에 세립질 퇴적물은 여름철 장강으로부터 이어도 해역으로 유입된 것으로 보인다. 이와 같이, 이어 도의 퇴적작용은 여름철 장강 유입수와 태풍의 영향이 큰 것으로 해석된다.
염분은 해양의 밀도를 결정하는 중요한 변수이자 전지구 물의 순환을 나타내는 주요 인자 중 하나이다. 해상 염분 관측은 선박을 이용한 현장조사, Argo 플로트, 부이를 통한 조사가 주로 수행되어 왔다. 2009년 염분관측 인공위 성이 발사한 이래로, 위성 염분자료를 이용하여 전 지구 해역에서 표층 염분 관측이 가능해졌다. 그러나 위성 염분자료는 다양한 오차를 포함하기 때문에 연구 자료로 활용하기에 앞서 정확도 검증과정이 필요하다. 따라서 본 연구에서는 2015년 4월부터 2020년 8월까지 Soil Moisture Active Passive (SMAP) 위성 염분자료와 이어도 해양과학기지에서 제공하는 실측 염분자료 간의 정확도 및 오차특성을 비교 분석하였다. 총 314개의 일치점을 생산하였으며, 염분의 평균제 곱근오차 및 평균편차는 각각 1.79, 0.91 psu로 제시되었다. 전반적으로 위성 염분이 실측 염분보다 과대추정 되는 것으로 나타났다. 위성 염분의 오차는 계절, 표층 수온, 풍속과 같은 다양한 해양 환경적 요인에 의존성을 보였다. 여름철 위성 염분과 실측 염분의 차이는 0.18 psu 이하로 저수온보다는 고수온에서 위성 염분의 정확도가 증가하였다. 이는 센서의 민감도에 따른 결과였다. 마찬가지로 5 m s−1 이상 풍속 조건에서 오차가 줄어들었다. 본 연구결과는 연안에서 위성 염분자료를 활용할 경우에는 특정한 연구 목적에 적합한지 확인하여 제한적으로 사용하여야 함을 제시한다.
Observation data measured at Ieodo Ocean Research Station (IORS) have been utilized in oceanographic and atmospheric studies since 2003. Sea level data observed at the IORS have not been paid attention as compared with many other variables such as aerosol, radiation, turbulent flux, wind, wave, fog, temperature, and salinity. Total sea level rises at the IORS (5.6 mm yr−1 ) from both satellite and tide-gauge observations were higher than those in the northeast Asian marginal seas (5.4 mm yr−1 ) and the world (4.6 mm yr−1 ) from satellite observation from 2009 to 2018. The rates of thermosteric, halosteric, and steric sea level rises were 2.7-4.8, −0.7-2.6, 2.3-7.4 mm yr−1 from four different calculating methods using observations. The rising rate of the steric sea level was higher than that of the total sea level in the case with additional data quality control. Calculating the non-steric sea level was not found to yield meaningful results, despite the ability to calculate non-steric sea level by simply subtracting the steric sea level from total sea level. This uncertainty did not arise from the data analysis but from a lack of good data, even though tide, temperature, and salinity data were quality controlled two times by Korea Hydrographic and Oceanography Agency. The status of the IORS data suggests that the maintenance management of observation systems, equipment, and data quality control should be improved to facilitate data use from the IORS.
지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12oC (OISST)와 최대 0.55oC (MURSST)의 편차와 최소 0.77oC (CMC 해수면온도)와 최대 0.96oC (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 −0.38-0.38oC의 편차와 0.55-0.82oC의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수 면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.
본 연구의 목적은 샤머니즘적 접근을 통해서 이청준의 『이어도』에 나타난 희생제의적 양상과 제주 사람들에게 이어도가 지니고 있는 의미를 고찰해보고자 한다. 이 작품에서 이어도는 고대로부터 인간의 원초적 욕망, 죽음에 대한 두려움, 그리고 공포를 극복해주는 수단으로서 활용되어왔던 샤머니즘적 숭배의 대상이며 동시에 현실을 살아갈 수 있는 힘의 원천이라고 할 수 있다. 이어도에 대한 제주 사람들의 강한 집착과 신앙적 믿음은 논리적으로 설명하기 힘들다. 왜냐하면, 이것은 오랜 세월 동안 제주 사람들이 거친 바다와 싸워서 삶을 지켜내는 과정에서 뿌리 깊이 박힌 샤머니즘적 전통이라고 할 수 있다. 이 작품 속에서 술집 <이어도> 여인은 샤먼의 역할을 수행하면서 죽은 자와 산 자의 넋을 위로해주는 주술적 행위로서 이어도와 관련된 노래를 비장한 태도로 부르고 있다. 현대 사회에서 이러한 샤머니즘적 요인들은 현실적으로 불합리하고, 모순적인 것임에 틀림이 없다. 그러나 거친 바다를 삶의 터전으로 살아가는 제주 사람들에게 현실의 삶 또한 전혀 논리적이지 않다. 따라서 제주 사람들은 비논리적이고 모순된 현실의 삶의 애환을 치유하고 정화시킬 수 있는 토대로서 이어도와 지속적인 관계를 유지하고 있다. 결론적으로 제주 사람들에게 이어도는 현실의 결핍을 충족시켜주고, 이상적 세계를 꿈꾸게 해주면서 삶의 위안을 얻을 수 있는 공간이다.
해상풍은 장기간동안 인공위성 산란계와 마이크로파 복사계를 주로 활용하여 관측되어왔다. 반면 위성 고도계산출 풍속 자료의 중요성은 산란계의 탁월한 해상풍 관측 성능으로 인해 거의 부각되지 않았다. 인공위성 고도계 풍속 자료는 해수면고도를 산출하기 위한 해상상태편차(sea state bias) 보정항의 입력 자료로서 활용됨에 따라 높은 정확도가 요구된다. 본 연구에서는 인공위성 고도계(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 풍속을 검증하고 오차 특성을 분석하기 위하여 이어도 해양과학기지와 마라도, 외연도 해양기상부이의 풍속 자료를 활용하여 2007년 12월부터 2016년 5월까지 총 1504개의 일치점 자료를 생성하였다. 해양실측 풍속에 대한 고도계 풍속은 1.59 m s−1의 평균 제곱근오차와 −0.35 m s−1의 음의 편차를 보였다. 해양실측 풍속에 대한 고도계 해상풍 오차를 분석한 결과 고도계 해상풍은 풍속이 약할 때 과대추정되며 풍속이 강할 때 과소추정되는 특징을 보였다. 위성-실측 자료 간의 거리에 따른 고도계 풍속 오차를 분석한 결과 구간별 오차의 최댓값과 최솟값의 차는 거리에 따라 점차 증가하였다. 고도계 풍속의 정확도 향상을 위하여 분석된 오차 특성을 기반으로 보정식을 유도한 후 고도계 풍속을 보정하였다. 보정 전후의 풍속 자료를 활용하여 해상상태편차를 산출하였으며 Jason-1의 해상상태편차에 대한 해상풍 오차 보정의 영향을 확인하였다.
The impact of sound speed variability in the sea is the very important on acoustic propagation for the underwater acoustic systems. Understanding of the temporal and spatial variability of ocean sound speed in the sea around the Ieodo were obtained using oceanographic data (temperature, salinity). from the Korea Oceanographic Data Center, collected by season for 17 years. The vertical distributions of sound speed are mainly related to seasonal variations and various current such as Chinese coastal water, Yellow Sea Cold Water (YSCW), Kuroshio source water. The standard deviations show that great variations of sound speed exist in the upper layer and observation station between 16 and 18. In order to quantitatively explain the reason for sound speed variations, Empirical Orthogonal Function (EOF) analysis was performed on sound speed data at the Line 316 covering 68 cruises between 2002 and 2018. Three main modes of EOFs respectively revealed 55, 29, and 5% the total variance of sound speed. The first mode of the EOFs was associated with influence of surface heating. The second EOFs pattern shows that contributions of YSCW and surface heating. The first and second modes had seasonal and inter-annul variations.
To examine the fluctuations of aerosol number concentration with different size in the boundary layer of marine area during summer season, aerosol particles were assayed in the Ieodo Ocean Research Station, which is located 419 km southwest of Marado, the southernmost island of Korea, from 24 June to 4 July, 2008. The Laser Particle Counter (LPC) was used to measure the size of aerosol particles and NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 3 μm in diameter to smaller particles more than 1 μm in diameter with wind direction during precipitation. The aerosol number concentration decreased with increasing temperature. An increase (decrease) of small size of aerosol (0.3∼0.5 μm in diameter) number concentration was induced by convergence (divergence) of the wind fields. The aerosol number concentration of bigger size more than 3 μm in diameter after precipitation was removed as much as 89∼94% compared with aerosol number concentration before precipitation. It is considered that the larger aerosol particles would be more efficient for scavenging at marine boundary layer. In addition, the aerosol number concentration with divergence and convergence could be related with the occurrence and mechanism of aerosol in marine boundary layer.